new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 15

Game-Theoretic and Reinforcement Learning-Based Cluster Head Selection for Energy-Efficient Wireless Sensor Network

Energy in Wireless Sensor Networks (WSNs) is critical to network lifetime and data delivery. However, the primary impediment to the durability and dependability of these sensor nodes is their short battery life. Currently, power-saving algorithms such as clustering and routing algorithms have improved energy efficiency in standard protocols. This paper proposes a clustering-based routing approach for creating an adaptive, energy-efficient mechanism. Our system employs a multi-step clustering strategy to select dynamic cluster heads (CH) with optimal energy distribution. We use Game Theory (GT) and Reinforcement Learning (RL) to optimize resource utilization. Modeling the network as a multi-agent RL problem using GT principles allows for self-clustering while optimizing sensor lifetime and energy balance. The proposed AI-powered CH-Finding algorithm improves network efficiency by preventing premature energy depletion in specific nodes while also ensuring uniform energy usage across the network. Our solution enables controlled power consumption, resulting in a deterministic network lifetime. This predictability lowers maintenance costs by reducing the need for node replacement. Furthermore, our proposed method prevents sensor nodes from disconnecting from the network by designating the sensor with the highest charge as an intermediary and using single-hop routing. This approach improves the energy efficiency and stability of Wireless Sensor Network (WSN) deployments.

Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models

This paper presents Dolphin, a novel decoder-decoder architecture for energy-efficient processing of long contexts in language models. Our approach addresses the significant energy consumption and latency challenges inherent in on-device models. Dolphin employs a compact 0.5B parameter decoder to distill extensive contextual information into a memory embedding, substantially reducing the input length for the primary 7B parameter decoder model. Inspired by vision-language models, we repurpose the image embedding projector to encode long textual contexts, effectively treating extended context as a distinct modality. This innovative method enables processing of substantially longer contexts without the typical computational overhead associated with extended input sequences. Empirical evaluations demonstrate a 10-fold improvement in energy efficiency and a 5-fold reduction in latency compared to conventional full-length context processing methods without losing quality of the response. Our work contributes to the development of more sustainable and scalable language models for on-device applications, addressing the critical need for energy-efficient and responsive AI technologies in resource-constrained environments while maintaining the accuracy to understand long contexts. This research has implications for the broader field of natural language processing, particularly in the domain of efficient model design for resource-limited settings. By enabling more sophisticated AI capabilities on edge devices, Dolphin paves the way for advanced language processing in a wide range of applications where computational resources are at a premium. The Dolphin model is publicly available at https://huggingface.co/NexaAIDev/Dolphin.

Comparing Software Developers with ChatGPT: An Empirical Investigation

The advent of automation in particular Software Engineering (SE) tasks has transitioned from theory to reality. Numerous scholarly articles have documented the successful application of Artificial Intelligence to address issues in areas such as project management, modeling, testing, and development. A recent innovation is the introduction of ChatGPT, an ML-infused chatbot, touted as a resource proficient in generating programming codes and formulating software testing strategies for developers and testers respectively. Although there is speculation that AI-based computation can increase productivity and even substitute software engineers in software development, there is currently a lack of empirical evidence to verify this. Moreover, despite the primary focus on enhancing the accuracy of AI systems, non-functional requirements including energy efficiency, vulnerability, fairness (i.e., human bias), and safety frequently receive insufficient attention. This paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration, enhancing the reliability of AI-based methods, and understanding task suitability for humans or AI. Furthermore, it facilitates the effective implementation of cooperative work structures and human-in-the-loop processes. This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics. The empirical study includes a case of assessing ChatGPT-generated code versus code produced by developers and uploaded in Leetcode.

An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage

Scalable and cost-effective solutions to renewable energy storage are essential to addressing the world's rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen or methane. To be widely adopted, this process requires cost-effective solutions to running electrochemical reactions. An open challenge is finding low-cost electrocatalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (density functional theory), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of machine learning may provide a method to efficiently approximate these calculations, leading to new approaches in finding effective electrocatalysts. In this paper, we provide an introduction to the challenges in finding suitable electrocatalysts, how machine learning may be applied to the problem, and the use of the Open Catalyst Project OC20 dataset for model training.