Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMulti-granular Legal Topic Classification on Greek Legislation
In this work, we study the task of classifying legal texts written in the Greek language. We introduce and make publicly available a novel dataset based on Greek legislation, consisting of more than 47 thousand official, categorized Greek legislation resources. We experiment with this dataset and evaluate a battery of advanced methods and classifiers, ranging from traditional machine learning and RNN-based methods to state-of-the-art Transformer-based methods. We show that recurrent architectures with domain-specific word embeddings offer improved overall performance while being competitive even to transformer-based models. Finally, we show that cutting-edge multilingual and monolingual transformer-based models brawl on the top of the classifiers' ranking, making us question the necessity of training monolingual transfer learning models as a rule of thumb. To the best of our knowledge, this is the first time the task of Greek legal text classification is considered in an open research project, while also Greek is a language with very limited NLP resources in general.
Multi-Granularity Prediction for Scene Text Recognition
Scene text recognition (STR) has been an active research topic in computer vision for years. To tackle this challenging problem, numerous innovative methods have been successively proposed and incorporating linguistic knowledge into STR models has recently become a prominent trend. In this work, we first draw inspiration from the recent progress in Vision Transformer (ViT) to construct a conceptually simple yet powerful vision STR model, which is built upon ViT and outperforms previous state-of-the-art models for scene text recognition, including both pure vision models and language-augmented methods. To integrate linguistic knowledge, we further propose a Multi-Granularity Prediction strategy to inject information from the language modality into the model in an implicit way, i.e. , subword representations (BPE and WordPiece) widely-used in NLP are introduced into the output space, in addition to the conventional character level representation, while no independent language model (LM) is adopted. The resultant algorithm (termed MGP-STR) is able to push the performance envelop of STR to an even higher level. Specifically, it achieves an average recognition accuracy of 93.35% on standard benchmarks. Code is available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/OCR/MGP-STR.
Multi-Granularity Language-Guided Training for Multi-Object Tracking
Most existing multi-object tracking methods typically learn visual tracking features via maximizing dis-similarities of different instances and minimizing similarities of the same instance. While such a feature learning scheme achieves promising performance, learning discriminative features solely based on visual information is challenging especially in case of environmental interference such as occlusion, blur and domain variance. In this work, we argue that multi-modal language-driven features provide complementary information to classical visual features, thereby aiding in improving the robustness to such environmental interference. To this end, we propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity (scene-and instance-level) and combines it with standard visual features to obtain discriminative representations. To develop LG-MOT, we annotate existing MOT datasets with scene-and instance-level language descriptions. We then encode both instance-and scene-level language information into high-dimensional embeddings, which are utilized to guide the visual features during training. At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions. Extensive experiments on three benchmarks, MOT17, DanceTrack and SportsMOT, reveal the merits of the proposed contributions leading to state-of-the-art performance. On the DanceTrack test set, our LG-MOT achieves an absolute gain of 2.2\% in terms of target object association (IDF1 score), compared to the baseline using only visual features. Further, our LG-MOT exhibits strong cross-domain generalizability. The dataset and code will be available at https://github.com/WesLee88524/LG-MOT.
Multi-Granularity Video Object Segmentation
Current benchmarks for video segmentation are limited to annotating only salient objects (i.e., foreground instances). Despite their impressive architectural designs, previous works trained on these benchmarks have struggled to adapt to real-world scenarios. Thus, developing a new video segmentation dataset aimed at tracking multi-granularity segmentation target in the video scene is necessary. In this work, we aim to generate multi-granularity video segmentation dataset that is annotated for both salient and non-salient masks. To achieve this, we propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset that includes various types and granularities of mask annotations. We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation. In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset, which leads to the best performance among the existing video object segmentation methods and Segment SAM-based video segmentation methods. Project page is available at https://cvlab-kaist.github.io/MUG-VOS.
Multi-Granularity Semantic Revision for Large Language Model Distillation
Knowledge distillation plays a key role in compressing the Large Language Models (LLMs), which boosts a small-size student model under large teacher models' guidance. However, existing LLM distillation methods overly rely on student-generated outputs, which may introduce generation errors and misguide the distillation process. Moreover, the distillation loss functions introduced in previous art struggle to align the most informative part due to the complex distribution of LLMs' outputs. To address these problems, we propose a multi-granularity semantic revision method for LLM distillation. At the sequence level, we propose a sequence correction and re-generation (SCRG) strategy. SCRG first calculates the semantic cognitive difference between the teacher and student to detect the error token, then corrects it with the teacher-generated one, and re-generates the sequence to reduce generation errors and enhance generation diversity. At the token level, we design a distribution adaptive clipping Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL loss exploits a learnable sub-network to adaptively extract semantically dense areas from the teacher's output, avoiding the interference of redundant information in the distillation process. Finally, at the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent, further enhancing the transfer of semantic information. Extensive experiments across different model families with parameters ranging from 0.1B to 13B demonstrate the superiority of our method compared to existing methods.
Multi-granularity Correspondence Learning from Long-term Noisy Videos
Existing video-language studies mainly focus on learning short video clips, leaving long-term temporal dependencies rarely explored due to over-high computational cost of modeling long videos. To address this issue, one feasible solution is learning the correspondence between video clips and captions, which however inevitably encounters the multi-granularity noisy correspondence (MNC) problem. To be specific, MNC refers to the clip-caption misalignment (coarse-grained) and frame-word misalignment (fine-grained), hindering temporal learning and video understanding. In this paper, we propose NOise Robust Temporal Optimal traNsport (Norton) that addresses MNC in a unified optimal transport (OT) framework. In brief, Norton employs video-paragraph and clip-caption contrastive losses to capture long-term dependencies based on OT. To address coarse-grained misalignment in video-paragraph contrast, Norton filters out the irrelevant clips and captions through an alignable prompt bucket and realigns asynchronous clip-caption pairs based on transport distance. To address the fine-grained misalignment, Norton incorporates a soft-maximum operator to identify crucial words and key frames. Additionally, Norton exploits the potential faulty negative samples in clip-caption contrast by rectifying the alignment target with OT assignment to ensure precise temporal modeling. Extensive experiments on video retrieval, videoQA, and action segmentation verify the effectiveness of our method. Code is available at https://lin-yijie.github.io/projects/Norton.
Multi-granularity Interaction Simulation for Unsupervised Interactive Segmentation
Interactive segmentation enables users to segment as needed by providing cues of objects, which introduces human-computer interaction for many fields, such as image editing and medical image analysis. Typically, massive and expansive pixel-level annotations are spent to train deep models by object-oriented interactions with manually labeled object masks. In this work, we reveal that informative interactions can be made by simulation with semantic-consistent yet diverse region exploration in an unsupervised paradigm. Concretely, we introduce a Multi-granularity Interaction Simulation (MIS) approach to open up a promising direction for unsupervised interactive segmentation. Drawing on the high-quality dense features produced by recent self-supervised models, we propose to gradually merge patches or regions with similar features to form more extensive regions and thus, every merged region serves as a semantic-meaningful multi-granularity proposal. By randomly sampling these proposals and simulating possible interactions based on them, we provide meaningful interaction at multiple granularities to teach the model to understand interactions. Our MIS significantly outperforms non-deep learning unsupervised methods and is even comparable with some previous deep-supervised methods without any annotation.
Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning
Learning medical visual representations directly from paired radiology reports has become an emerging topic in representation learning. However, existing medical image-text joint learning methods are limited by instance or local supervision analysis, ignoring disease-level semantic correspondences. In this paper, we present a novel Multi-Granularity Cross-modal Alignment (MGCA) framework for generalized medical visual representation learning by harnessing the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels, i.e., pathological region-level, instance-level, and disease-level. Specifically, we first incorporate the instance-wise alignment module by maximizing the agreement between image-report pairs. Further, for token-wise alignment, we introduce a bidirectional cross-attention strategy to explicitly learn the matching between fine-grained visual tokens and text tokens, followed by contrastive learning to align them. More important, to leverage the high-level inter-subject relationship semantic (e.g., disease) correspondences, we design a novel cross-modal disease-level alignment paradigm to enforce the cross-modal cluster assignment consistency. Extensive experimental results on seven downstream medical image datasets covering image classification, object detection, and semantic segmentation tasks demonstrate the stable and superior performance of our framework.
Multi-Granularity Distillation Scheme Towards Lightweight Semi-Supervised Semantic Segmentation
Albeit with varying degrees of progress in the field of Semi-Supervised Semantic Segmentation, most of its recent successes are involved in unwieldy models and the lightweight solution is still not yet explored. We find that existing knowledge distillation techniques pay more attention to pixel-level concepts from labeled data, which fails to take more informative cues within unlabeled data into account. Consequently, we offer the first attempt to provide lightweight SSSS models via a novel multi-granularity distillation (MGD) scheme, where multi-granularity is captured from three aspects: i) complementary teacher structure; ii) labeled-unlabeled data cooperative distillation; iii) hierarchical and multi-levels loss setting. Specifically, MGD is formulated as a labeled-unlabeled data cooperative distillation scheme, which helps to take full advantage of diverse data characteristics that are essential in the semi-supervised setting. Image-level semantic-sensitive loss, region-level content-aware loss, and pixel-level consistency loss are set up to enrich hierarchical distillation abstraction via structurally complementary teachers. Experimental results on PASCAL VOC2012 and Cityscapes reveal that MGD can outperform the competitive approaches by a large margin under diverse partition protocols. For example, the performance of ResNet-18 and MobileNet-v2 backbone is boosted by 11.5% and 4.6% respectively under 1/16 partition protocol on Cityscapes. Although the FLOPs of the model backbone is compressed by 3.4-5.3x (ResNet-18) and 38.7-59.6x (MobileNetv2), the model manages to achieve satisfactory segmentation results.
Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose Mavors, a novel framework that introduces Multi-granularity video representation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
MTU-Bench: A Multi-granularity Tool-Use Benchmark for Large Language Models
Large Language Models (LLMs) have displayed massive improvements in reasoning and decision-making skills and can hold natural conversations with users. Recently, many tool-use benchmark datasets have been proposed. However, existing datasets have the following limitations: (1). Insufficient evaluation scenarios (e.g., only cover limited tool-use scenes). (2). Extensive evaluation costs (e.g., GPT API costs). To address these limitations, in this work, we propose a multi-granularity tool-use benchmark for large language models called MTU-Bench. For the "multi-granularity" property, our MTU-Bench covers five tool usage scenes (i.e., single-turn and single-tool, single-turn and multiple-tool, multiple-turn and single-tool, multiple-turn and multiple-tool, and out-of-distribution tasks). Besides, all evaluation metrics of our MTU-Bench are based on the prediction results and the ground truth without using any GPT or human evaluation metrics. Moreover, our MTU-Bench is collected by transforming existing high-quality datasets to simulate real-world tool usage scenarios, and we also propose an instruction dataset called MTU-Instruct data to enhance the tool-use abilities of existing LLMs. Comprehensive experimental results demonstrate the effectiveness of our MTU-Bench. Code and data will be released at https: //github.com/MTU-Bench-Team/MTU-Bench.git.
MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning
Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.
Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents
Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.
Instruction-guided Multi-Granularity Segmentation and Captioning with Large Multimodal Model
Large Multimodal Models (LMMs) have achieved significant progress by extending large language models. Building on this progress, the latest developments in LMMs demonstrate the ability to generate dense pixel-wise segmentation through the integration of segmentation models.Despite the innovations, the textual responses and segmentation masks of existing works remain at the instance level, showing limited ability to perform fine-grained understanding and segmentation even provided with detailed textual cues.To overcome this limitation, we introduce a Multi-Granularity Large Multimodal Model (MGLMM), which is capable of seamlessly adjusting the granularity of Segmentation and Captioning (SegCap) following user instructions, from panoptic SegCap to fine-grained SegCap. We name such a new task Multi-Granularity Segmentation and Captioning (MGSC). Observing the lack of a benchmark for model training and evaluation over the MGSC task, we establish a benchmark with aligned masks and captions in multi-granularity using our customized automated annotation pipeline. This benchmark comprises 10K images and more than 30K image-question pairs. We will release our dataset along with the implementation of our automated dataset annotation pipeline for further research.Besides, we propose a novel unified SegCap data format to unify heterogeneous segmentation datasets; it effectively facilitates learning to associate object concepts with visual features during multi-task training. Extensive experiments demonstrate that our MGLMM excels at tackling more than eight downstream tasks and achieves state-of-the-art performance in MGSC, GCG, image captioning, referring segmentation, multiple and empty segmentation, and reasoning segmentation tasks. The great performance and versatility of MGLMM underscore its potential impact on advancing multimodal research.
Progressive Multi-Granularity Training for Non-Autoregressive Translation
Non-autoregressive translation (NAT) significantly accelerates the inference process via predicting the entire target sequence. However, recent studies show that NAT is weak at learning high-mode of knowledge such as one-to-many translations. We argue that modes can be divided into various granularities which can be learned from easy to hard. In this study, we empirically show that NAT models are prone to learn fine-grained lower-mode knowledge, such as words and phrases, compared with sentences. Based on this observation, we propose progressive multi-granularity training for NAT. More specifically, to make the most of the training data, we break down the sentence-level examples into three types, i.e. words, phrases, sentences, and with the training goes, we progressively increase the granularities. Experiments on Romanian-English, English-German, Chinese-English, and Japanese-English demonstrate that our approach improves the phrase translation accuracy and model reordering ability, therefore resulting in better translation quality against strong NAT baselines. Also, we show that more deterministic fine-grained knowledge can further enhance performance.
AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings
Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
MMRA: A Benchmark for Multi-granularity Multi-image Relational Association
Given the remarkable success that large visual language models (LVLMs) have achieved in image perception tasks, the endeavor to make LVMLs perceive the world like humans is drawing increasing attention. Current multi-modal benchmarks mainly focus on the objective fact or certain topic related potential knowledge within a image, but overlook the associative relations between multiple images. Therefore, we define a multi-image relation association task, and meticulously curate MMRA benchmark, a Multi-granularity Multi-image Relational Association benchmark, consisted of 1026 samples. In order to systematically and comprehensively evaluate mainstream LVLMs, we establish an associational relation system among images that contain 11 subtasks (e.g, UsageSimilarity, SubEvent, etc.) at two granularity levels (i.e., "image" and "entity") according to the relations in ConceptNet. Our experiments demonstrate that, on our MMRA benchmark, current mainstream LVLMs all have their own advantages and disadvantages across different subtasks. It is worth noting that, at the entity level, the performance of all models is worse than that of them at the image level, indicating that the fine-grained multi-image perception task is still challenging for LVLMs. The tasks related to spatial perception are relatively difficult for LVLMs to handle. Furthermore, we find that LVMLs exhibit a good ability to perceive image details, and the key to enhancing their multi-image association capability is to strengthen the reasoning ability of their language model component. All our codes and data are released at htthttps://github.com/Wusiwei0410/MMRA.
PUMA: Empowering Unified MLLM with Multi-granular Visual Generation
Recent advancements in multimodal foundation models have yielded significant progress in vision-language understanding. Initial attempts have also explored the potential of multimodal large language models (MLLMs) for visual content generation. However, existing works have insufficiently addressed the varying granularity demands of different image generation tasks within a unified MLLM paradigm - from the diversity required in text-to-image generation to the precise controllability needed in image manipulation. In this work, we propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation. PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs, elegantly addressing the different granularity requirements of various image generation tasks within a unified MLLM framework. Following multimodal pretraining and task-specific instruction tuning, PUMA demonstrates proficiency in a wide range of multimodal tasks. This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks. The code and model will be released in https://github.com/rongyaofang/PUMA.
EarthMind: Towards Multi-Granular and Multi-Sensor Earth Observation with Large Multimodal Models
Large Multimodal Models (LMMs) have demonstrated strong performance in various vision-language tasks. However, they often struggle to comprehensively understand Earth Observation (EO) data, which is critical for monitoring the environment and the effects of human activity on it. In this work, we present EarthMind, a novel vision-language framework for multi-granular and multi-sensor EO data understanding. EarthMind features two core components: (1) Spatial Attention Prompting (SAP), which reallocates attention within the LLM to enhance pixel-level understanding; and (2) Cross-modal Fusion, which aligns heterogeneous modalities into a shared space and adaptively reweighs tokens based on their information density for effective fusion. To facilitate multi-sensor fusion evaluation, we propose EarthMind-Bench, a comprehensive benchmark with over 2,000 human-annotated multi-sensor image-question pairs, covering a wide range of perception and reasoning tasks. Extensive experiments demonstrate the effectiveness of EarthMind. It achieves state-of-the-art performance on EarthMind-Bench, surpassing GPT-4o despite being only 4B in scale. Moreover, EarthMind outperforms existing methods on multiple public EO benchmarks, showcasing its potential to handle both multi-granular and multi-sensor challenges in a unified framework.
GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., 4.5 times faster than the GLaMM.
EssayJudge: A Multi-Granular Benchmark for Assessing Automated Essay Scoring Capabilities of Multimodal Large Language Models
Automated Essay Scoring (AES) plays a crucial role in educational assessment by providing scalable and consistent evaluations of writing tasks. However, traditional AES systems face three major challenges: (1) reliance on handcrafted features that limit generalizability, (2) difficulty in capturing fine-grained traits like coherence and argumentation, and (3) inability to handle multimodal contexts. In the era of Multimodal Large Language Models (MLLMs), we propose EssayJudge, the first multimodal benchmark to evaluate AES capabilities across lexical-, sentence-, and discourse-level traits. By leveraging MLLMs' strengths in trait-specific scoring and multimodal context understanding, EssayJudge aims to offer precise, context-rich evaluations without manual feature engineering, addressing longstanding AES limitations. Our experiments with 18 representative MLLMs reveal gaps in AES performance compared to human evaluation, particularly in discourse-level traits, highlighting the need for further advancements in MLLM-based AES research.
Mugs: A Multi-Granular Self-Supervised Learning Framework
In self-supervised learning, multi-granular features are heavily desired though rarely investigated, as different downstream tasks (e.g., general and fine-grained classification) often require different or multi-granular features, e.g.~fine- or coarse-grained one or their mixture. In this work, for the first time, we propose an effective MUlti-Granular Self-supervised learning (Mugs) framework to explicitly learn multi-granular visual features. Mugs has three complementary granular supervisions: 1) an instance discrimination supervision (IDS), 2) a novel local-group discrimination supervision (LGDS), and 3) a group discrimination supervision (GDS). IDS distinguishes different instances to learn instance-level fine-grained features. LGDS aggregates features of an image and its neighbors into a local-group feature, and pulls local-group features from different crops of the same image together and push them away for others. It provides complementary instance supervision to IDS via an extra alignment on local neighbors, and scatters different local-groups separately to increase discriminability. Accordingly, it helps learn high-level fine-grained features at a local-group level. Finally, to prevent similar local-groups from being scattered randomly or far away, GDS brings similar samples close and thus pulls similar local-groups together, capturing coarse-grained features at a (semantic) group level. Consequently, Mugs can capture three granular features that often enjoy higher generality on diverse downstream tasks over single-granular features, e.g.~instance-level fine-grained features in contrastive learning. By only pretraining on ImageNet-1K, Mugs sets new SoTA linear probing accuracy 82.1% on ImageNet-1K and improves previous SoTA by 1.1%. It also surpasses SoTAs on other tasks, e.g. transfer learning, detection and segmentation.
AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models
Large language models (LLMs) like ChatGPT have revealed amazing intelligence. How to evaluate the question-solving abilities of LLMs and their degrees of intelligence is a hot-spot but challenging issue. First, the question-solving abilities are interlaced with different ability branches like understanding and massive knowledge categories like mathematics. Second, the inputs of questions are multimodal that may involve text and images. Third, the response format of LLMs is diverse and thus poses great challenges for result extraction and evaluation. In this paper, we propose AGIBench -- a multi-granularity, multimodal, human-referenced, and auto-scoring benchmarking methodology for LLMs. Instead of a collection of blended questions, AGIBench focuses on three typical ability branches and adopts a four-tuple <ability branch, knowledge, difficulty, modal> to label the attributes of each question. First, it supports multi-granularity benchmarking, e.g., per-question, per-ability branch, per-knowledge, per-modal, per-dataset, and per-difficulty level granularities. Second, it contains multimodal input, including text and images. Third, it classifies all the questions into five degrees of difficulty according to the average accuracy rate of abundant educated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid introducing additional unpredictability and provides an auto-scoring method to extract and judge the result. Finally, it defines multi-dimensional metrics, including accuracy under the average, worst, best, and majority voting cases, and repeatability. AGIBench is publically available from https://www.benchcouncil.org/agibench.
GaraMoSt: Parallel Multi-Granularity Motion and Structural Modeling for Efficient Multi-Frame Interpolation in DSA Images
The rapid and accurate direct multi-frame interpolation method for Digital Subtraction Angiography (DSA) images is crucial for reducing radiation and providing real-time assistance to physicians for precise diagnostics and treatment. DSA images contain complex vascular structures and various motions. Applying natural scene Video Frame Interpolation (VFI) methods results in motion artifacts, structural dissipation, and blurriness. Recently, MoSt-DSA has specifically addressed these issues for the first time and achieved SOTA results. However, MoSt-DSA's focus on real-time performance leads to insufficient suppression of high-frequency noise and incomplete filtering of low-frequency noise in the generated images. To address these issues within the same computational time scale, we propose GaraMoSt. Specifically, we optimize the network pipeline with a parallel design and propose a module named MG-MSFE. MG-MSFE extracts frame-relative motion and structural features at various granularities in a fully convolutional parallel manner and supports independent, flexible adjustment of context-aware granularity at different scales, thus enhancing computational efficiency and accuracy. Extensive experiments demonstrate that GaraMoSt achieves the SOTA performance in accuracy, robustness, visual effects, and noise suppression, comprehensively surpassing MoSt-DSA and other natural scene VFI methods. The code and models are available at https://github.com/ZyoungXu/GaraMoSt.
MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model
This paper presents MaVEn, an innovative Multi-granularity Visual Encoding framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning. Current MLLMs primarily focus on single-image visual understanding, limiting their ability to interpret and integrate information across multiple images. MaVEn addresses this limitation by combining discrete visual symbol sequences, which abstract coarse-grained semantic concepts, with traditional continuous representation sequences that model fine-grained features. This dual approach bridges the semantic gap between visual and textual data, thereby improving the model's ability to process and interpret information from multiple images effectively. Additionally, we design a dynamic reduction mechanism by for long-sequence continuous features to enhance multi-image processing efficiency. Experimental results demonstrate that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking
In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research. Our code and dataset are publicly accessible via the https://github.com/Job-SDF/benchmark.
UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding
Vision-language foundation models, represented by Contrastive language-image pre-training (CLIP), have gained increasing attention for jointly understanding both vision and textual tasks. However, existing approaches primarily focus on training models to match global image representations with textual descriptions, thereby overlooking the critical alignment between local regions and corresponding text tokens. This paper extends CLIP with multi-granularity alignment. Notably, we deliberately construct a new dataset comprising pseudo annotations at various levels of granularities, encompassing image-level, region-level, and pixel-level captions/tags. Accordingly, we develop a unified multi-granularity learning framework, named UMG-CLIP, that simultaneously empowers the model with versatile perception abilities across different levels of detail. Equipped with parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP models and achieves state-of-the-art performance on diverse image understanding benchmarks, including open-world recognition, retrieval, semantic segmentation, and panoptic segmentation tasks. We hope UMG-CLIP can serve as a valuable option for advancing vision-language foundation models.
Spectrum-guided Multi-granularity Referring Video Object Segmentation
Current referring video object segmentation (R-VOS) techniques extract conditional kernels from encoded (low-resolution) vision-language features to segment the decoded high-resolution features. We discovered that this causes significant feature drift, which the segmentation kernels struggle to perceive during the forward computation. This negatively affects the ability of segmentation kernels. To address the drift problem, we propose a Spectrum-guided Multi-granularity (SgMg) approach, which performs direct segmentation on the encoded features and employs visual details to further optimize the masks. In addition, we propose Spectrum-guided Cross-modal Fusion (SCF) to perform intra-frame global interactions in the spectral domain for effective multimodal representation. Finally, we extend SgMg to perform multi-object R-VOS, a new paradigm that enables simultaneous segmentation of multiple referred objects in a video. This not only makes R-VOS faster, but also more practical. Extensive experiments show that SgMg achieves state-of-the-art performance on four video benchmark datasets, outperforming the nearest competitor by 2.8% points on Ref-YouTube-VOS. Our extended SgMg enables multi-object R-VOS, runs about 3 times faster while maintaining satisfactory performance. Code is available at https://github.com/bo-miao/SgMg.
Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge
Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.
BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation
In this paper, we present a new embedding model, called M3-Embedding, which is distinguished for its versatility in Multi-Linguality, Multi-Functionality, and Multi-Granularity. It can support more than 100 working languages, leading to new state-of-the-art performances on multi-lingual and cross-lingual retrieval tasks. It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval, which provides a unified model foundation for real-world IR applications. It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. The effective training of M3-Embedding involves the following technical contributions. We propose a novel self-knowledge distillation approach, where the relevance scores from different retrieval functionalities can be integrated as the teacher signal to enhance the training quality. We also optimize the batching strategy, enabling a large batch size and high training throughput to ensure the discriminativeness of embeddings. To the best of our knowledge, M3-Embedding is the first embedding model which realizes such a strong versatility. The model and code will be publicly available at https://github.com/FlagOpen/FlagEmbedding.
Towards Efficient Resume Understanding: A Multi-Granularity Multi-Modal Pre-Training Approach
In the contemporary era of widespread online recruitment, resume understanding has been widely acknowledged as a fundamental and crucial task, which aims to extract structured information from resume documents automatically. Compared to the traditional rule-based approaches, the utilization of recently proposed pre-trained document understanding models can greatly enhance the effectiveness of resume understanding. The present approaches have, however, disregarded the hierarchical relations within the structured information presented in resumes, and have difficulty parsing resumes in an efficient manner. To this end, in this paper, we propose a novel model, namely ERU, to achieve efficient resume understanding. Specifically, we first introduce a layout-aware multi-modal fusion transformer for encoding the segments in the resume with integrated textual, visual, and layout information. Then, we design three self-supervised tasks to pre-train this module via a large number of unlabeled resumes. Next, we fine-tune the model with a multi-granularity sequence labeling task to extract structured information from resumes. Finally, extensive experiments on a real-world dataset clearly demonstrate the effectiveness of ERU.
SEED-X: Multimodal Models with Unified Multi-granularity Comprehension and Generation
The rapid evolution of multimodal foundation model has demonstrated significant progresses in vision-language understanding and generation, e.g., our previous work SEED-LLaMA. However, there remains a gap between its capability and the real-world applicability, primarily due to the model's limited capacity to effectively respond to various user instructions and interact with diverse visual data. In this work, we focus on bridging this gap through integrating two enhanced features: (1) comprehending images of arbitrary sizes and ratios, and (2) enabling multi-granularity image generation. We present a unified and versatile foundation model, namely, SEED-X, which is able to model multi-granularity visual semantics for comprehension and generation tasks. Besides the competitive results on public benchmarks, SEED-X demonstrates its effectiveness in handling real-world applications across various domains after instruction tuning. We hope that our work will inspire future research into what can be achieved by versatile multimodal foundation models in real-world applications. The models, codes, and datasets will be released in https://github.com/AILab-CVC/SEED-X.
Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers
Factual questions typically can be answered correctly at different levels of granularity. For example, both ``August 4, 1961'' and ``1961'' are correct answers to the question ``When was Barack Obama born?''. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model's uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.
PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.
EDGE: Enhanced Grounded GUI Understanding with Enriched Multi-Granularity Synthetic Data
Autonomous agents operating on the graphical user interfaces (GUIs) of various applications hold immense practical value. Unlike the large language model (LLM)-based methods which rely on structured texts and customized backends, the approaches using large vision-language models (LVLMs) are more intuitive and adaptable as they can visually perceive and directly interact with screens, making them indispensable in general scenarios without text metadata and tailored backends. Given the lack of high-quality training data for GUI-related tasks in existing work, this paper aims to enhance the GUI understanding and interacting capabilities of LVLMs through a data-driven approach. We propose EDGE, a general data synthesis framework that automatically generates large-scale, multi-granularity training data from webpages across the Web. Evaluation results on various GUI and agent benchmarks demonstrate that the model trained with the dataset generated through EDGE exhibits superior webpage understanding capabilities, which can then be easily transferred to previously unseen desktop and mobile environments. Our approach significantly reduces the dependence on manual annotations, empowering researchers to harness the vast public resources available on the Web to advance their work. Our source code, the dataset and the model are available at https://anonymous.4open.science/r/EDGE-1CDB.
ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback
Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.
Semantic-SAM: Segment and Recognize Anything at Any Granularity
In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, combining SA-1B training with other segmentation tasks, such as panoptic and part segmentation, leads to performance improvements. We will provide code and a demo for further exploration and evaluation.
GraCo: Granularity-Controllable Interactive Segmentation
Interactive Segmentation (IS) segments specific objects or parts in the image according to user input. Current IS pipelines fall into two categories: single-granularity output and multi-granularity output. The latter aims to alleviate the spatial ambiguity present in the former. However, the multi-granularity output pipeline suffers from limited interaction flexibility and produces redundant results. In this work, we introduce Granularity-Controllable Interactive Segmentation (GraCo), a novel approach that allows precise control of prediction granularity by introducing additional parameters to input. This enhances the customization of the interactive system and eliminates redundancy while resolving ambiguity. Nevertheless, the exorbitant cost of annotating multi-granularity masks and the lack of available datasets with granularity annotations make it difficult for models to acquire the necessary guidance to control output granularity. To address this problem, we design an any-granularity mask generator that exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs without requiring additional manual annotation. Based on these pairs, we propose a granularity-controllable learning strategy that efficiently imparts the granularity controllability to the IS model. Extensive experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods. This highlights the potential of GraCo to be a flexible annotation tool, capable of adapting to diverse segmentation scenarios. The project page: https://zhao-yian.github.io/GraCo.
SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery
Prior studies on Remote Sensing Foundation Model (RSFM) reveal immense potential towards a generic model for Earth Observation. Nevertheless, these works primarily focus on a single modality without temporal and geo-context modeling, hampering their capabilities for diverse tasks. In this study, we present SkySense, a generic billion-scale model, pre-trained on a curated multi-modal Remote Sensing Imagery (RSI) dataset with 21.5 million temporal sequences. SkySense incorporates a factorized multi-modal spatiotemporal encoder taking temporal sequences of optical and Synthetic Aperture Radar (SAR) data as input. This encoder is pre-trained by our proposed Multi-Granularity Contrastive Learning to learn representations across different modal and spatial granularities. To further enhance the RSI representations by the geo-context clue, we introduce Geo-Context Prototype Learning to learn region-aware prototypes upon RSI's multi-modal spatiotemporal features. To our best knowledge, SkySense is the largest Multi-Modal RSFM to date, whose modules can be flexibly combined or used individually to accommodate various tasks. It demonstrates remarkable generalization capabilities on a thorough evaluation encompassing 16 datasets over 7 tasks, from single- to multi-modal, static to temporal, and classification to localization. SkySense surpasses 18 recent RSFMs in all test scenarios. Specifically, it outperforms the latest models such as GFM, SatLas and Scale-MAE by a large margin, i.e., 2.76%, 3.67% and 3.61% on average respectively. We will release the pre-trained weights to facilitate future research and Earth Observation applications.
MG-MotionLLM: A Unified Framework for Motion Comprehension and Generation across Multiple Granularities
Recent motion-aware large language models have demonstrated promising potential in unifying motion comprehension and generation. However, existing approaches primarily focus on coarse-grained motion-text modeling, where text describes the overall semantics of an entire motion sequence in just a few words. This limits their ability to handle fine-grained motion-relevant tasks, such as understanding and controlling the movements of specific body parts. To overcome this limitation, we pioneer MG-MotionLLM, a unified motion-language model for multi-granular motion comprehension and generation. We further introduce a comprehensive multi-granularity training scheme by incorporating a set of novel auxiliary tasks, such as localizing temporal boundaries of motion segments via detailed text as well as motion detailed captioning, to facilitate mutual reinforcement for motion-text modeling across various levels of granularity. Extensive experiments show that our MG-MotionLLM achieves superior performance on classical text-to-motion and motion-to-text tasks, and exhibits potential in novel fine-grained motion comprehension and editing tasks. Project page: CVI-SZU/MG-MotionLLM
$\texttt{MixGR}$: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity
Recent studies show the growing significance of document retrieval in the generation of LLMs, i.e., RAG, within the scientific domain by bridging their knowledge gap. However, dense retrievers often struggle with domain-specific retrieval and complex query-document relationships, particularly when query segments correspond to various parts of a document. To alleviate such prevalent challenges, this paper introduces MixGR, which improves dense retrievers' awareness of query-document matching across various levels of granularity in queries and documents using a zero-shot approach. MixGR fuses various metrics based on these granularities to a united score that reflects a comprehensive query-document similarity. Our experiments demonstrate that MixGR outperforms previous document retrieval by 24.7%, 9.8%, and 6.9% on nDCG@5 with unsupervised, supervised, and LLM-based retrievers, respectively, averaged on queries containing multiple subqueries from five scientific retrieval datasets. Moreover, the efficacy of two downstream scientific question-answering tasks highlights the advantage of MixGR to boost the application of LLMs in the scientific domain. The code and experimental datasets are available.
Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts
Most existing methods in vision language pre-training rely on object-centric features extracted through object detection and make fine-grained alignments between the extracted features and texts. It is challenging for these methods to learn relations among multiple objects. To this end, we propose a new method called X-VLM to perform `multi-grained vision language pre-training.' The key to learning multi-grained alignments is to locate visual concepts in the image given the associated texts, and in the meantime align the texts with the visual concepts, where the alignments are in multi-granularity. Experimental results show that X-VLM effectively leverages the learned multi-grained alignments to many downstream vision language tasks and consistently outperforms state-of-the-art methods.
ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation
Current pre-training works in natural language generation pay little attention to the problem of exposure bias on downstream tasks. To address this issue, we propose an enhanced multi-flow sequence to sequence pre-training and fine-tuning framework named ERNIE-GEN, which bridges the discrepancy between training and inference with an infilling generation mechanism and a noise-aware generation method. To make generation closer to human writing patterns, this framework introduces a span-by-span generation flow that trains the model to predict semantically-complete spans consecutively rather than predicting word by word. Unlike existing pre-training methods, ERNIE-GEN incorporates multi-granularity target sampling to construct pre-training data, which enhances the correlation between encoder and decoder. Experimental results demonstrate that ERNIE-GEN achieves state-of-the-art results with a much smaller amount of pre-training data and parameters on a range of language generation tasks, including abstractive summarization (Gigaword and CNN/DailyMail), question generation (SQuAD), dialogue generation (Persona-Chat) and generative question answering (CoQA).
LEGO:Language Enhanced Multi-modal Grounding Model
Multi-modal large language models have demonstrated impressive performance across various tasks in different modalities. However, existing multi-modal models primarily emphasize capturing global information within each modality while neglecting the importance of perceiving local information across modalities. Consequently, these models lack the ability to effectively understand the fine-grained details of input data, limiting their performance in tasks that require a more nuanced understanding. To address this limitation, there is a compelling need to develop models that enable fine-grained understanding across multiple modalities, thereby enhancing their applicability to a wide range of tasks. In this paper, we propose LEGO, a language enhanced multi-modal grounding model. Beyond capturing global information like other multi-modal models, our proposed model excels at tasks demanding a detailed understanding of local information within the input. It demonstrates precise identification and localization of specific regions in images or moments in videos. To achieve this objective, we design a diversified dataset construction pipeline, resulting in a multi-modal, multi-granularity dataset for model training. The code, dataset, and demo of our model can be found at https: //github.com/lzw-lzw/LEGO.
InstructERC: Reforming Emotion Recognition in Conversation with a Retrieval Multi-task LLMs Framework
The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review.
Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
Ferret-v2: An Improved Baseline for Referring and Grounding with Large Language Models
While Ferret seamlessly integrates regional understanding into the Large Language Model (LLM) to facilitate its referring and grounding capability, it poses certain limitations: constrained by the pre-trained fixed visual encoder and failed to perform well on broader tasks. In this work, we unveil Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any resolution grounding and referring: A flexible approach that effortlessly handles higher image resolution, improving the model's ability to process and understand images in greater detail. (2) Multi-granularity visual encoding: By integrating the additional DINOv2 encoder, the model learns better and diverse underlying contexts for global and fine-grained visual information. (3) A three-stage training paradigm: Besides image-caption alignment, an additional stage is proposed for high-resolution dense alignment before the final instruction tuning. Experiments show that Ferret-v2 provides substantial improvements over Ferret and other state-of-the-art methods, thanks to its high-resolution scaling and fine-grained visual processing.
TimesBERT: A BERT-Style Foundation Model for Time Series Understanding
Time series analysis is crucial in diverse scenarios. Beyond forecasting, considerable real-world tasks are categorized into classification, imputation, and anomaly detection, underscoring different capabilities termed time series understanding in this paper. While GPT-style models have been positioned as foundation models for time series forecasting, the BERT-style architecture, which has made significant advances in natural language understanding, has not been fully unlocked for time series understanding, possibly attributed to the undesirable dropout of essential elements of BERT. In this paper, inspired by the shared multi-granularity structure between multivariate time series and multisentence documents, we design TimesBERT to learn generic representations of time series including temporal patterns and variate-centric characteristics. In addition to a natural adaptation of masked modeling, we propose a parallel task of functional token prediction to embody vital multi-granularity structures. Our model is pre-trained on 260 billion time points across diverse domains. Leveraging multi-granularity representations, TimesBERT achieves state-of-the-art performance across four typical downstream understanding tasks, outperforming task-specific models and language pre-trained backbones, positioning it as a versatile foundation model for time series understanding.
Segment Anything without Supervision
The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Unsupervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not require human annotations. UnSAM utilizes a divide-and-conquer strategy to "discover" the hierarchical structure of visual scenes. We first leverage top-down clustering methods to partition an unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-up clustering method is employed to iteratively merge them into larger groups, thereby forming a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise model training. Evaluated across seven popular datasets, UnSAM achieves competitive results with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also benefit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B's ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised UnSAM can often segment entities overlooked by supervised SAM, exceeding SAM's AR by over 6.7% and AP by 3.9% on SA-1B.
MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM
Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.
Reasoning with LLMs for Zero-Shot Vulnerability Detection
Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git
AtomoVideo: High Fidelity Image-to-Video Generation
Recently, video generation has achieved significant rapid development based on superior text-to-image generation techniques. In this work, we propose a high fidelity framework for image-to-video generation, named AtomoVideo. Based on multi-granularity image injection, we achieve higher fidelity of the generated video to the given image. In addition, thanks to high quality datasets and training strategies, we achieve greater motion intensity while maintaining superior temporal consistency and stability. Our architecture extends flexibly to the video frame prediction task, enabling long sequence prediction through iterative generation. Furthermore, due to the design of adapter training, our approach can be well combined with existing personalised models and controllable modules. By quantitatively and qualitatively evaluation, AtomoVideo achieves superior results compared to popular methods, more examples can be found on our project website: https://atomo- video.github.io/.
Segment Any 3D Gaussians
Interactive 3D segmentation in radiance fields is an appealing task since its importance in 3D scene understanding and manipulation. However, existing methods face challenges in either achieving fine-grained, multi-granularity segmentation or contending with substantial computational overhead, inhibiting real-time interaction. In this paper, we introduce Segment Any 3D GAussians (SAGA), a novel 3D interactive segmentation approach that seamlessly blends a 2D segmentation foundation model with 3D Gaussian Splatting (3DGS), a recent breakthrough of radiance fields. SAGA efficiently embeds multi-granularity 2D segmentation results generated by the segmentation foundation model into 3D Gaussian point features through well-designed contrastive training. Evaluation on existing benchmarks demonstrates that SAGA can achieve competitive performance with state-of-the-art methods. Moreover, SAGA achieves multi-granularity segmentation and accommodates various prompts, including points, scribbles, and 2D masks. Notably, SAGA can finish the 3D segmentation within milliseconds, achieving nearly 1000x acceleration compared to previous SOTA. The project page is at https://jumpat.github.io/SAGA.
Beyond Autoregression: Discrete Diffusion for Complex Reasoning and Planning
Autoregressive language models, despite their impressive capabilities, struggle with complex reasoning and long-term planning tasks. We introduce discrete diffusion models as a novel solution to these challenges. Through the lens of subgoal imbalance, we demonstrate how diffusion models effectively learn difficult subgoals that elude autoregressive approaches. We propose Multi-granularity Diffusion Modeling (MDM), which prioritizes subgoals based on difficulty during learning. On complex tasks like Countdown, Sudoku, and Boolean Satisfiability Problems, MDM significantly outperforms autoregressive models without using search techniques. For instance, MDM achieves 91.5\% and 100\% accuracy on Countdown and Sudoku, respectively, compared to 45.8\% and 20.7\% for autoregressive models. Our work highlights the potential of diffusion-based approaches in advancing AI capabilities for sophisticated language understanding and problem-solving tasks.
Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos
We present Perceive Anything Model (PAM), a conceptually straightforward and efficient framework for comprehensive region-level visual understanding in images and videos. Our approach extends the powerful segmentation model SAM 2 by integrating Large Language Models (LLMs), enabling simultaneous object segmentation with the generation of diverse, region-specific semantic outputs, including categories, label definition, functional explanations, and detailed captions. A key component, Semantic Perceiver, is introduced to efficiently transform SAM 2's rich visual features, which inherently carry general vision, localization, and semantic priors into multi-modal tokens for LLM comprehension. To support robust multi-granularity understanding, we also develop a dedicated data refinement and augmentation pipeline, yielding a high-quality dataset of 1.5M image and 0.6M video region-semantic annotations, including novel region-level streaming video caption data. PAM is designed for lightweightness and efficiency, while also demonstrates strong performance across a diverse range of region understanding tasks. It runs 1.2-2.4x faster and consumes less GPU memory than prior approaches, offering a practical solution for real-world applications. We believe that our effective approach will serve as a strong baseline for future research in region-level visual understanding.
The Devil is in the Distributions: Explicit Modeling of Scene Content is Key in Zero-Shot Video Captioning
Zero-shot video captioning requires that a model generate high-quality captions without human-annotated video-text pairs for training. State-of-the-art approaches to the problem leverage CLIP to extract visual-relevant textual prompts to guide language models in generating captions. These methods tend to focus on one key aspect of the scene and build a caption that ignores the rest of the visual input. To address this issue, and generate more accurate and complete captions, we propose a novel progressive multi-granularity textual prompting strategy for zero-shot video captioning. Our approach constructs three distinct memory banks, encompassing noun phrases, scene graphs of noun phrases, and entire sentences. Moreover, we introduce a category-aware retrieval mechanism that models the distribution of natural language surrounding the specific topics in question. Extensive experiments demonstrate the effectiveness of our method with 5.7%, 16.2%, and 3.4% improvements in terms of the main metric CIDEr on MSR-VTT, MSVD, and VATEX benchmarks compared to existing state-of-the-art.
LION-FS: Fast & Slow Video-Language Thinker as Online Video Assistant
First-person video assistants are highly anticipated to enhance our daily lives through online video dialogue. However, existing online video assistants often sacrifice assistant efficacy for real-time efficiency by processing low-frame-rate videos with coarse-grained visual features.To overcome the trade-off between efficacy and efficiency, we propose "Fast & Slow Video-Language Thinker" as an onLIne videO assistaNt, LION-FS, achieving real-time, proactive, temporally accurate, and contextually precise responses. LION-FS adopts a two-stage optimization strategy: 1)Fast Path: Routing-Based Response Determination evaluates frame-by-frame whether an immediate response is necessary. To enhance response determination accuracy and handle higher frame-rate inputs efficiently, we employ Token Aggregation Routing to dynamically fuse spatiotemporal features without increasing token numbers, while utilizing Token Dropping Routing to eliminate redundant features. 2)Slow Path: Multi-granularity Keyframe Augmentation optimizes keyframes during response generation. To provide comprehensive and detailed responses beyond atomic actions constrained by training data, fine-grained spatial features and human-environment interaction features are extracted through multi-granular pooling. These features are further integrated into a meticulously designed multimodal Thinking Template to guide more precise response generation. Comprehensive evaluations on online video tasks demonstrate that LION-FS achieves state-of-the-art efficacy and efficiency.
Content-Rich AIGC Video Quality Assessment via Intricate Text Alignment and Motion-Aware Consistency
The advent of next-generation video generation models like Sora poses challenges for AI-generated content (AIGC) video quality assessment (VQA). These models substantially mitigate flickering artifacts prevalent in prior models, enable longer and complex text prompts and generate longer videos with intricate, diverse motion patterns. Conventional VQA methods designed for simple text and basic motion patterns struggle to evaluate these content-rich videos. To this end, we propose CRAVE (Content-Rich AIGC Video Evaluator), specifically for the evaluation of Sora-era AIGC videos. CRAVE proposes the multi-granularity text-temporal fusion that aligns long-form complex textual semantics with video dynamics. Additionally, CRAVE leverages the hybrid motion-fidelity modeling to assess temporal artifacts. Furthermore, given the straightforward prompts and content in current AIGC VQA datasets, we introduce CRAVE-DB, a benchmark featuring content-rich videos from next-generation models paired with elaborate prompts. Extensive experiments have shown that the proposed CRAVE achieves excellent results on multiple AIGC VQA benchmarks, demonstrating a high degree of alignment with human perception. All data and code will be publicly available at https://github.com/littlespray/CRAVE.
A Repository-Level Dataset For Detecting, Classifying and Repairing Software Vulnerabilities
Open-Source Software (OSS) vulnerabilities bring great challenges to the software security and pose potential risks to our society. Enormous efforts have been devoted into automated vulnerability detection, among which deep learning (DL)-based approaches have proven to be the most effective. However, the current labeled data present the following limitations: (1) Tangled Patches: Developers may submit code changes unrelated to vulnerability fixes within patches, leading to tangled patches. (2) Lacking Inter-procedural Vulnerabilities: The existing vulnerability datasets typically contain function-level and file-level vulnerabilities, ignoring the relations between functions, thus rendering the approaches unable to detect the inter-procedural vulnerabilities. (3) Outdated Patches: The existing datasets usually contain outdated patches, which may bias the model during training. To address the above limitations, in this paper, we propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul. The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed. (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level, and line-level. (3) A trace-based filtering module, aiming at filtering the outdated patches, which leverages the file path trace-based filter and commit time trace-based filter to construct an up-to-date dataset.
PoNet: Pooling Network for Efficient Token Mixing in Long Sequences
Transformer-based models have achieved great success in various NLP, vision, and speech tasks. However, the core of Transformer, the self-attention mechanism, has a quadratic time and memory complexity with respect to the sequence length, which hinders applications of Transformer-based models to long sequences. Many approaches have been proposed to mitigate this problem, such as sparse attention mechanisms, low-rank matrix approximations and scalable kernels, and token mixing alternatives to self-attention. We propose a novel Pooling Network (PoNet) for token mixing in long sequences with linear complexity. We design multi-granularity pooling and pooling fusion to capture different levels of contextual information and combine their interactions with tokens. On the Long Range Arena benchmark, PoNet significantly outperforms Transformer and achieves competitive accuracy, while being only slightly slower than the fastest model, FNet, across all sequence lengths measured on GPUs. We also conduct systematic studies on the transfer learning capability of PoNet and observe that PoNet achieves 95.7% of the accuracy of BERT on the GLUE benchmark, outperforming FNet by 4.5% relative. Comprehensive ablation analysis demonstrates effectiveness of the designed multi-granularity pooling and pooling fusion for token mixing in long sequences and efficacy of the designed pre-training tasks for PoNet to learn transferable contextualized language representations.
Dynamic Context Compression for Efficient RAG
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but incurs significant inference costs due to lengthy retrieved contexts. While context compression mitigates this issue, existing methods apply fixed compression rates, over-compressing simple queries or under-compressing complex ones. We propose Adaptive Context Compression for RAG (ACC-RAG), a framework that dynamically adjusts compression rates based on input complexity, optimizing inference efficiency without sacrificing accuracy. ACC-RAG combines a hierarchical compressor (for multi-granular embeddings) with a context selector to retain minimal sufficient information, akin to human skimming. Evaluated on Wikipedia and five QA datasets, ACC-RAG outperforms fixed-rate methods and matches/unlocks over 4 times faster inference versus standard RAG while maintaining or improving accuracy.
Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
Pixel-Wise Recognition for Holistic Surgical Scene Understanding
This paper presents the Holistic and Multi-Granular Surgical Scene Understanding of Prostatectomies (GraSP) dataset, a curated benchmark that models surgical scene understanding as a hierarchy of complementary tasks with varying levels of granularity. Our approach encompasses long-term tasks, such as surgical phase and step recognition, and short-term tasks, including surgical instrument segmentation and atomic visual actions detection. To exploit our proposed benchmark, we introduce the Transformers for Actions, Phases, Steps, and Instrument Segmentation (TAPIS) model, a general architecture that combines a global video feature extractor with localized region proposals from an instrument segmentation model to tackle the multi-granularity of our benchmark. Through extensive experimentation in ours and alternative benchmarks, we demonstrate TAPIS's versatility and state-of-the-art performance across different tasks. This work represents a foundational step forward in Endoscopic Vision, offering a novel framework for future research towards holistic surgical scene understanding.
ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts
Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.
URECA: Unique Region Caption Anything
Region-level captioning aims to generate natural language descriptions for specific image regions while highlighting their distinguishing features. However, existing methods struggle to produce unique captions across multi-granularity, limiting their real-world applicability. To address the need for detailed region-level understanding, we introduce URECA dataset, a large-scale dataset tailored for multi-granularity region captioning. Unlike prior datasets that focus primarily on salient objects, URECA dataset ensures a unique and consistent mapping between regions and captions by incorporating a diverse set of objects, parts, and background elements. Central to this is a stage-wise data curation pipeline, where each stage incrementally refines region selection and caption generation. By leveraging Multimodal Large Language Models (MLLMs) at each stage, our pipeline produces distinctive and contextually grounded captions with improved accuracy and semantic diversity. Building upon this dataset, we present URECA, a novel captioning model designed to effectively encode multi-granularity regions. URECA maintains essential spatial properties such as position and shape through simple yet impactful modifications to existing MLLMs, enabling fine-grained and semantically rich region descriptions. Our approach introduces dynamic mask modeling and a high-resolution mask encoder to enhance caption uniqueness. Experiments show that URECA achieves state-of-the-art performance on URECA dataset and generalizes well to existing region-level captioning benchmarks.
RLTF: Reinforcement Learning from Unit Test Feedback
The goal of program synthesis, or code generation, is to generate executable code based on given descriptions. Recently, there has been an increasing number of studies employing reinforcement learning (RL) to improve the performance of large language models (LLMs) for code. However, these RL methods have only used offline frameworks, limiting their exploration of new sample spaces. Additionally, current approaches that utilize unit test signals are rather simple, not accounting for specific error locations within the code. To address these issues, we proposed RLTF, i.e., Reinforcement Learning from Unit Test Feedback, a novel online RL framework with unit test feedback of multi-granularity for refining code LLMs. Our approach generates data in real-time during training and simultaneously utilizes fine-grained feedback signals to guide the model towards producing higher-quality code. Extensive experiments show that RLTF achieves state-of-the-art performance on the APPS and the MBPP benchmarks. Our code can be found at: https://github.com/Zyq-scut/RLTF.
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Object categories are typically organized into a multi-granularity taxonomic hierarchy. When classifying categories at different hierarchy levels, traditional uni-modal approaches focus primarily on image features, revealing limitations in complex scenarios. Recent studies integrating Vision-Language Models (VLMs) with class hierarchies have shown promise, yet they fall short of fully exploiting the hierarchical relationships. These efforts are constrained by their inability to perform effectively across varied granularity of categories. To tackle this issue, we propose a novel framework (HGCLIP) that effectively combines CLIP with a deeper exploitation of the Hierarchical class structure via Graph representation learning. We explore constructing the class hierarchy into a graph, with its nodes representing the textual or image features of each category. After passing through a graph encoder, the textual features incorporate hierarchical structure information, while the image features emphasize class-aware features derived from prototypes through the attention mechanism. Our approach demonstrates significant improvements on 11 diverse visual recognition benchmarks. Our codes are fully available at https://github.com/richard-peng-xia/HGCLIP.
Breaking the SFT Plateau: Multimodal Structured Reinforcement Learning for Chart-to-Code Generation
While reinforcement learning (RL) has proven highly effective for general reasoning in vision-language models, its application to tasks requiring in-depth understanding of information-rich images and generation of structured outputs remains underexplored. Chart-to-code generation exemplifies this challenge, demanding complex reasoning over visual charts to generate structured code. Supervised fine-tuning (SFT) alone is often insufficient, highlighting the need for effective RL strategies that appropriately reward structured outputs. We systematically investigate the performance plateau in SFT through large-scale experiments and propose Multimodal Structured Reinforcement Learning (MSRL) for chart-to-code generation, which substantially breaks through this plateau. We construct the largest training corpus to date, containing 3 million chart-code pairs from real-world arXiv tables to mitigate simplistic patterns of prior synthetic data. Despite reaching state-of-the-art performance, our experiments show that scaling SFT data eventually hits a plateau where further increases yield negligible improvements. Our MSRL method leverages a multi-granularity structured reward system using multimodal textual and visual feedback. At the textual level, rule-based rewards validate fine-grained code details. At the visual level, model-based rewards assess structural similarity by rendering generated code into images and employing an evaluator model. We implement this within a two-stage curriculum for training stability. Results demonstrate that MSRL significantly breaks the SFT plateau, improving high-level metrics by 6.2% and 9.9% on ChartMimic and ReachQA benchmarks respectively, achieving competitive performance with advanced closed-source models.
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
RACCooN: Remove, Add, and Change Video Content with Auto-Generated Narratives
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. It supports the addition of video objects, inpainting, and attribute modification within a unified framework, surpassing existing video editing and inpainting benchmarks. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
QwenLong-CPRS: Towards $\infty$-LLMs with Dynamic Context Optimization
This technical report presents QwenLong-CPRS, a context compression framework designed for explicit long-context optimization, addressing prohibitive computation overhead during the prefill stage and the "lost in the middle" performance degradation of large language models (LLMs) during long sequence processing. Implemented through a novel dynamic context optimization mechanism, QwenLong-CPRS enables multi-granularity context compression guided by natural language instructions, achieving both efficiency gains and improved performance. Evolved from the Qwen architecture series, QwenLong-CPRS introduces four key innovations: (1) Natural language-guided dynamic optimization, (2) Bidirectional reasoning layers for enhanced boundary awareness, (3) Token critic mechanisms with language modeling heads, and (4) Window-parallel inference. Comprehensive evaluations across five benchmarks (4K-2M word contexts) demonstrate QwenLong-CPRS's threefold effectiveness: (1) Consistent superiority over other context management methods like RAG and sparse attention in both accuracy and efficiency. (2) Architecture-agnostic integration with all flagship LLMs, including GPT-4o, Gemini2.0-pro, Claude3.7-sonnet, DeepSeek-v3, and Qwen2.5-max, achieves 21.59times context compression alongside 19.15-point average performance gains; (3) Deployed with Qwen2.5-32B-Instruct, QwenLong-CPRS surpasses leading proprietary LLMs by 4.85 and 10.88 points on Ruler-128K and InfiniteBench, establishing new SOTA performance.
Going Denser with Open-Vocabulary Part Segmentation
Object detection has been expanded from a limited number of categories to open vocabulary. Moving forward, a complete intelligent vision system requires understanding more fine-grained object descriptions, object parts. In this paper, we propose a detector with the ability to predict both open-vocabulary objects and their part segmentation. This ability comes from two designs. First, we train the detector on the joint of part-level, object-level and image-level data to build the multi-granularity alignment between language and image. Second, we parse the novel object into its parts by its dense semantic correspondence with the base object. These two designs enable the detector to largely benefit from various data sources and foundation models. In open-vocabulary part segmentation experiments, our method outperforms the baseline by 3.3sim7.3 mAP in cross-dataset generalization on PartImageNet, and improves the baseline by 7.3 novel AP_{50} in cross-category generalization on Pascal Part. Finally, we train a detector that generalizes to a wide range of part segmentation datasets while achieving better performance than dataset-specific training.
Towards Training-free Anomaly Detection with Vision and Language Foundation Models
Anomaly detection is valuable for real-world applications, such as industrial quality inspection. However, most approaches focus on detecting local structural anomalies while neglecting compositional anomalies incorporating logical constraints. In this paper, we introduce LogSAD, a novel multi-modal framework that requires no training for both Logical and Structural Anomaly Detection. First, we propose a match-of-thought architecture that employs advanced large multi-modal models (i.e. GPT-4V) to generate matching proposals, formulating interests and compositional rules of thought for anomaly detection. Second, we elaborate on multi-granularity anomaly detection, consisting of patch tokens, sets of interests, and composition matching with vision and language foundation models. Subsequently, we present a calibration module to align anomaly scores from different detectors, followed by integration strategies for the final decision. Consequently, our approach addresses both logical and structural anomaly detection within a unified framework and achieves state-of-the-art results without the need for training, even when compared to supervised approaches, highlighting its robustness and effectiveness. Code is available at https://github.com/zhang0jhon/LogSAD.
Holistic Semantic Representation for Navigational Trajectory Generation
Trajectory generation has garnered significant attention from researchers in the field of spatio-temporal analysis, as it can generate substantial synthesized human mobility trajectories that enhance user privacy and alleviate data scarcity. However, existing trajectory generation methods often focus on improving trajectory generation quality from a singular perspective, lacking a comprehensive semantic understanding across various scales. Consequently, we are inspired to develop a HOlistic SEmantic Representation (HOSER) framework for navigational trajectory generation. Given an origin-and-destination (OD) pair and the starting time point of a latent trajectory, we first propose a Road Network Encoder to expand the receptive field of road- and zone-level semantics. Second, we design a Multi-Granularity Trajectory Encoder to integrate the spatio-temporal semantics of the generated trajectory at both the point and trajectory levels. Finally, we employ a Destination-Oriented Navigator to seamlessly integrate destination-oriented guidance. Extensive experiments on three real-world datasets demonstrate that HOSER outperforms state-of-the-art baselines by a significant margin. Moreover, the model's performance in few-shot learning and zero-shot learning scenarios further verifies the effectiveness of our holistic semantic representation.
Deterministic Reversible Data Augmentation for Neural Machine Translation
Data augmentation is an effective way to diversify corpora in machine translation, but previous methods may introduce semantic inconsistency between original and augmented data because of irreversible operations and random subword sampling procedures. To generate both symbolically diverse and semantically consistent augmentation data, we propose Deterministic Reversible Data Augmentation (DRDA), a simple but effective data augmentation method for neural machine translation. DRDA adopts deterministic segmentations and reversible operations to generate multi-granularity subword representations and pulls them closer together with multi-view techniques. With no extra corpora or model changes required, DRDA outperforms strong baselines on several translation tasks with a clear margin (up to 4.3 BLEU gain over Transformer) and exhibits good robustness in noisy, low-resource, and cross-domain datasets.
AgenTracer: Who Is Inducing Failure in the LLM Agentic Systems?
Large Language Model (LLM)-based agentic systems, often comprising multiple models, complex tool invocations, and orchestration protocols, substantially outperform monolithic agents. Yet this very sophistication amplifies their fragility, making them more prone to system failure. Pinpointing the specific agent or step responsible for an error within long execution traces defines the task of agentic system failure attribution. Current state-of-the-art reasoning LLMs, however, remain strikingly inadequate for this challenge, with accuracy generally below 10%. To address this gap, we propose AgenTracer, the first automated framework for annotating failed multi-agent trajectories via counterfactual replay and programmed fault injection, producing the curated dataset TracerTraj. Leveraging this resource, we develop AgenTracer-8B, a lightweight failure tracer trained with multi-granular reinforcement learning, capable of efficiently diagnosing errors in verbose multi-agent interactions. On the Who&When benchmark, AgenTracer-8B outperforms giant proprietary LLMs like Gemini-2.5-Pro and Claude-4-Sonnet by up to 18.18%, setting a new standard in LLM agentic failure attribution. More importantly, AgenTracer-8B delivers actionable feedback to off-the-shelf multi-agent systems like MetaGPT and MaAS with 4.8-14.2% performance gains, empowering self-correcting and self-evolving agentic AI.
View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields
Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields
From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.
TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval
Most text-video retrieval methods utilize the text-image pre-trained models like CLIP as a backbone. These methods process each sampled frame independently by the image encoder, resulting in high computational overhead and limiting practical deployment. Addressing this, we focus on efficient text-video retrieval by tackling two key challenges: 1. From the perspective of trainable parameters, current parameter-efficient fine-tuning methods incur high inference costs; 2. From the perspective of model complexity, current token compression methods are mainly designed for images to reduce spatial redundancy but overlook temporal redundancy in consecutive frames of a video. To tackle these challenges, we propose Temporal Token Merging (TempMe), a parameter-efficient and training-inference efficient text-video retrieval architecture that minimizes trainable parameters and model complexity. Specifically, we introduce a progressive multi-granularity framework. By gradually combining neighboring clips, we reduce spatio-temporal redundancy and enhance temporal modeling across different frames, leading to improved efficiency and performance. Extensive experiments validate the superiority of our TempMe. Compared to previous parameter-efficient text-video retrieval methods, TempMe achieves superior performance with just 0.50M trainable parameters. It significantly reduces output tokens by 95% and GFLOPs by 51%, while achieving a 1.8X speedup and a 4.4% R-Sum improvement. With full fine-tuning, TempMe achieves a significant 7.9% R-Sum improvement, trains 1.57X faster, and utilizes 75.2% GPU memory usage. The code is available at https://github.com/LunarShen/TempMe.
OpenUrban3D: Annotation-Free Open-Vocabulary Semantic Segmentation of Large-Scale Urban Point Clouds
Open-vocabulary semantic segmentation enables models to recognize and segment objects from arbitrary natural language descriptions, offering the flexibility to handle novel, fine-grained, or functionally defined categories beyond fixed label sets. While this capability is crucial for large-scale urban point clouds that support applications such as digital twins, smart city management, and urban analytics, it remains largely unexplored in this domain. The main obstacles are the frequent absence of high-quality, well-aligned multi-view imagery in large-scale urban point cloud datasets and the poor generalization of existing three-dimensional (3D) segmentation pipelines across diverse urban environments with substantial variation in geometry, scale, and appearance. To address these challenges, we present OpenUrban3D, the first 3D open-vocabulary semantic segmentation framework for large-scale urban scenes that operates without aligned multi-view images, pre-trained point cloud segmentation networks, or manual annotations. Our approach generates robust semantic features directly from raw point clouds through multi-view, multi-granularity rendering, mask-level vision-language feature extraction, and sample-balanced fusion, followed by distillation into a 3D backbone model. This design enables zero-shot segmentation for arbitrary text queries while capturing both semantic richness and geometric priors. Extensive experiments on large-scale urban benchmarks, including SensatUrban and SUM, show that OpenUrban3D achieves significant improvements in both segmentation accuracy and cross-scene generalization over existing methods, demonstrating its potential as a flexible and scalable solution for 3D urban scene understanding.
Learning Compact Vision Tokens for Efficient Large Multimodal Models
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only 25% vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
TV-Dialogue: Crafting Theme-Aware Video Dialogues with Immersive Interaction
Recent advancements in LLMs have accelerated the development of dialogue generation across text and images, yet video-based dialogue generation remains underexplored and presents unique challenges. In this paper, we introduce Theme-aware Video Dialogue Crafting (TVDC), a novel task aimed at generating new dialogues that align with video content and adhere to user-specified themes. We propose TV-Dialogue, a novel multi-modal agent framework that ensures both theme alignment (i.e., the dialogue revolves around the theme) and visual consistency (i.e., the dialogue matches the emotions and behaviors of characters in the video) by enabling real-time immersive interactions among video characters, thereby accurately understanding the video content and generating new dialogue that aligns with the given themes. To assess the generated dialogues, we present a multi-granularity evaluation benchmark with high accuracy, interpretability and reliability, demonstrating the effectiveness of TV-Dialogue on self-collected dataset over directly using existing LLMs. Extensive experiments reveal that TV-Dialogue can generate dialogues for videos of any length and any theme in a zero-shot manner without training. Our findings underscore the potential of TV-Dialogue for various applications, such as video re-creation, film dubbing and its use in downstream multimodal tasks.
Have We Designed Generalizable Structural Knowledge Promptings? Systematic Evaluation and Rethinking
Large language models (LLMs) have demonstrated exceptional performance in text generation within current NLP research. However, the lack of factual accuracy is still a dark cloud hanging over the LLM skyscraper. Structural knowledge prompting (SKP) is a prominent paradigm to integrate external knowledge into LLMs by incorporating structural representations, achieving state-of-the-art results in many knowledge-intensive tasks. However, existing methods often focus on specific problems, lacking a comprehensive exploration of the generalization and capability boundaries of SKP. This paper aims to evaluate and rethink the generalization capability of the SKP paradigm from four perspectives including Granularity, Transferability, Scalability, and Universality. To provide a thorough evaluation, we introduce a novel multi-granular, multi-level benchmark called SUBARU, consisting of 9 different tasks with varying levels of granularity and difficulty.
CliBench: Multifaceted Evaluation of Large Language Models in Clinical Decisions on Diagnoses, Procedures, Lab Tests Orders and Prescriptions
The integration of Artificial Intelligence (AI), especially Large Language Models (LLMs), into the clinical diagnosis process offers significant potential to improve the efficiency and accessibility of medical care. While LLMs have shown some promise in the medical domain, their application in clinical diagnosis remains underexplored, especially in real-world clinical practice, where highly sophisticated, patient-specific decisions need to be made. Current evaluations of LLMs in this field are often narrow in scope, focusing on specific diseases or specialties and employing simplified diagnostic tasks. To bridge this gap, we introduce CliBench, a novel benchmark developed from the MIMIC IV dataset, offering a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis. This benchmark not only covers diagnoses from a diverse range of medical cases across various specialties but also incorporates tasks of clinical significance: treatment procedure identification, lab test ordering and medication prescriptions. Supported by structured output ontologies, CliBench enables a precise and multi-granular evaluation, offering an in-depth understanding of LLM's capability on diverse clinical tasks of desired granularity. We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making. Our preliminary results shed light on the potential and limitations of current LLMs in clinical settings, providing valuable insights for future advancements in LLM-powered healthcare.
Osprey: Pixel Understanding with Visual Instruction Tuning
Multimodal large language models (MLLMs) have recently achieved impressive general-purpose vision-language capabilities through visual instruction tuning. However, current MLLMs primarily focus on image-level or box-level understanding, falling short of achieving fine-grained vision-language alignment at the pixel level. Besides, the lack of mask-based instruction data limits their advancements. In this paper, we propose Osprey, a mask-text instruction tuning approach, to extend MLLMs by incorporating fine-grained mask regions into language instruction, aiming at achieving pixel-wise visual understanding. To achieve this goal, we first meticulously curate a mask-based region-text dataset with 724K samples, and then design a vision-language model by injecting pixel-level representation into LLM. Especially, Osprey adopts a convolutional CLIP backbone as the vision encoder and employs a mask-aware visual extractor to extract precise visual mask features from high resolution input. Experimental results demonstrate Osprey's superiority in various region understanding tasks, showcasing its new capability for pixel-level instruction tuning. In particular, Osprey can be integrated with Segment Anything Model (SAM) seamlessly to obtain multi-granularity semantics. The source code, dataset and demo can be found at https://github.com/CircleRadon/Osprey.
A Unified Hierarchical Framework for Fine-grained Cross-view Geo-localization over Large-scale Scenarios
Cross-view geo-localization is a promising solution for large-scale localization problems, requiring the sequential execution of retrieval and metric localization tasks to achieve fine-grained predictions. However, existing methods typically focus on designing standalone models for these two tasks, resulting in inefficient collaboration and increased training overhead. In this paper, we propose UnifyGeo, a novel unified hierarchical geo-localization framework that integrates retrieval and metric localization tasks into a single network. Specifically, we first employ a unified learning strategy with shared parameters to jointly learn multi-granularity representation, facilitating mutual reinforcement between these two tasks. Subsequently, we design a re-ranking mechanism guided by a dedicated loss function, which enhances geo-localization performance by improving both retrieval accuracy and metric localization references. Extensive experiments demonstrate that UnifyGeo significantly outperforms the state-of-the-arts in both task-isolated and task-associated settings. Remarkably, on the challenging VIGOR benchmark, which supports fine-grained localization evaluation, the 1-meter-level localization recall rate improves from 1.53\% to 39.64\% and from 0.43\% to 25.58\% under same-area and cross-area evaluations, respectively. Code will be made publicly available.
MegaSR: Mining Customized Semantics and Expressive Guidance for Image Super-Resolution
Pioneering text-to-image (T2I) diffusion models have ushered in a new era of real-world image super-resolution (Real-ISR), significantly enhancing the visual perception of reconstructed images. However, existing methods typically integrate uniform abstract textual semantics across all blocks, overlooking the distinct semantic requirements at different depths and the fine-grained, concrete semantics inherently present in the images themselves. Moreover, relying solely on a single type of guidance further disrupts the consistency of reconstruction. To address these issues, we propose MegaSR, a novel framework that mines customized block-wise semantics and expressive guidance for diffusion-based ISR. Compared to uniform textual semantics, MegaSR enables flexible adaptation to multi-granularity semantic awareness by dynamically incorporating image attributes at each block. Furthermore, we experimentally identify HED edge maps, depth maps, and segmentation maps as the most expressive guidance, and propose a multi-stage aggregation strategy to modulate them into the T2I models. Extensive experiments demonstrate the superiority of MegaSR in terms of semantic richness and structural consistency.
Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.
Towards Long-Horizon Vision-Language Navigation: Platform, Benchmark and Method
Existing Vision-Language Navigation (VLN) methods primarily focus on single-stage navigation, limiting their effectiveness in multi-stage and long-horizon tasks within complex and dynamic environments. To address these limitations, we propose a novel VLN task, named Long-Horizon Vision-Language Navigation (LH-VLN), which emphasizes long-term planning and decision consistency across consecutive subtasks. Furthermore, to support LH-VLN, we develop an automated data generation platform NavGen, which constructs datasets with complex task structures and improves data utility through a bidirectional, multi-granularity generation approach. To accurately evaluate complex tasks, we construct the Long-Horizon Planning and Reasoning in VLN (LHPR-VLN) benchmark consisting of 3,260 tasks with an average of 150 task steps, serving as the first dataset specifically designed for the long-horizon vision-language navigation task. Furthermore, we propose Independent Success Rate (ISR), Conditional Success Rate (CSR), and CSR weight by Ground Truth (CGT) metrics, to provide fine-grained assessments of task completion. To improve model adaptability in complex tasks, we propose a novel Multi-Granularity Dynamic Memory (MGDM) module that integrates short-term memory blurring with long-term memory retrieval to enable flexible navigation in dynamic environments. Our platform, benchmark and method supply LH-VLN with a robust data generation pipeline, comprehensive model evaluation dataset, reasonable metrics, and a novel VLN model, establishing a foundational framework for advancing LH-VLN.
MMDocBench: Benchmarking Large Vision-Language Models for Fine-Grained Visual Document Understanding
Large Vision-Language Models (LVLMs) have achieved remarkable performance in many vision-language tasks, yet their capabilities in fine-grained visual understanding remain insufficiently evaluated. Existing benchmarks either contain limited fine-grained evaluation samples that are mixed with other data, or are confined to object-level assessments in natural images. To holistically assess LVLMs' fine-grained visual understanding capabilities, we propose using document images with multi-granularity and multi-modal information to supplement natural images. In this light, we construct MMDocBench, a benchmark with various OCR-free document understanding tasks for the evaluation of fine-grained visual perception and reasoning abilities. MMDocBench defines 15 main tasks with 4,338 QA pairs and 11,353 supporting regions, covering various document images such as research papers, receipts, financial reports, Wikipedia tables, charts, and infographics. Based on MMDocBench, we conduct extensive experiments using 13 open-source and 3 proprietary advanced LVLMs, assessing their strengths and weaknesses across different tasks and document image types. The benchmark, task instructions, and evaluation code will be made publicly available.
CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.
MLLM Is a Strong Reranker: Advancing Multimodal Retrieval-augmented Generation via Knowledge-enhanced Reranking and Noise-injected Training
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in processing and generating content across multiple data modalities, including text, images, audio, and video. However, a significant drawback of MLLMs is their reliance on static training data, leading to outdated information and limited contextual awareness. This static nature hampers their ability to provide accurate, up-to-date responses, particularly in dynamic or rapidly evolving contexts. Integrating Multimodal Retrieval-augmented Generation (Multimodal RAG) offers a promising solution, but the system would inevitably encounter the multi-granularity noisy correspondence (MNC) problem, which involves two types of noise: coarse-grained (query-caption) and fine-grained (query-image). This noise hinders accurate retrieval and generation. In this work, we propose RagLLaVA, a novel framework with knowledge-enhanced reranking and noise-injected training, to address these limitations. We instruction-tune the MLLM with a simple yet effective instruction template to induce its ranking ability and serve it as a reranker to precisely filter the top-k retrieved images. For generation, we inject visual noise during training at the data and token levels to enhance the generator's robustness. Extensive experiments are conducted on the subsets of two datasets that require retrieving and reasoning over images to answer a given query. Our results demonstrate the superiority of RagLLaVA in retrieving accurately and generating robustly. Code and models are available at https://github.com/IDEA-FinAI/RagLLaVA.
CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
Time delay neural network (TDNN) has been proven to be efficient for speaker verification. One of its successful variants, ECAPA-TDNN, achieved state-of-the-art performance at the cost of much higher computational complexity and slower inference speed. This makes it inadequate for scenarios with demanding inference rate and limited computational resources. We are thus interested in finding an architecture that can achieve the performance of ECAPA-TDNN and the efficiency of vanilla TDNN. In this paper, we propose an efficient network based on context-aware masking, namely CAM++, which uses densely connected time delay neural network (D-TDNN) as backbone and adopts a novel multi-granularity pooling to capture contextual information at different levels. Extensive experiments on two public benchmarks, VoxCeleb and CN-Celeb, demonstrate that the proposed architecture outperforms other mainstream speaker verification systems with lower computational cost and faster inference speed.
Hearing Lips: Improving Lip Reading by Distilling Speech Recognizers
Lip reading has witnessed unparalleled development in recent years thanks to deep learning and the availability of large-scale datasets. Despite the encouraging results achieved, the performance of lip reading, unfortunately, remains inferior to the one of its counterpart speech recognition, due to the ambiguous nature of its actuations that makes it challenging to extract discriminant features from the lip movement videos. In this paper, we propose a new method, termed as Lip by Speech (LIBS), of which the goal is to strengthen lip reading by learning from speech recognizers. The rationale behind our approach is that the features extracted from speech recognizers may provide complementary and discriminant clues, which are formidable to be obtained from the subtle movements of the lips, and consequently facilitate the training of lip readers. This is achieved, specifically, by distilling multi-granularity knowledge from speech recognizers to lip readers. To conduct this cross-modal knowledge distillation, we utilize an efficacious alignment scheme to handle the inconsistent lengths of the audios and videos, as well as an innovative filtering strategy to refine the speech recognizer's prediction. The proposed method achieves the new state-of-the-art performance on the CMLR and LRS2 datasets, outperforming the baseline by a margin of 7.66% and 2.75% in character error rate, respectively.
HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs by incorporating retrieved knowledge chunks into the generation process. In general, the retrieval and generation steps usually have different requirements for these knowledge chunks. The retrieval step benefits from comprehensive information to improve retrieval accuracy, whereas excessively long chunks may introduce redundant contextual information, thereby diminishing both the effectiveness and efficiency of the generation process. However, existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation, resulting in suboptimal performance. In this paper, we propose a heterogeneous RAG framework (\myname) that decouples the representations of knowledge chunks for retrieval and generation, thereby enhancing the LLMs in both effectiveness and efficiency. Specifically, we utilize short chunks to represent knowledge to adapt the generation step and utilize the corresponding chunk with its contextual information from multi-granular views to enhance retrieval accuracy. We further introduce an adaptive prompt tuning method for the retrieval model to adapt the heterogeneous retrieval augmented generation process. Extensive experiments demonstrate that \myname achieves significant improvements compared to baselines.
REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
Interweaved Graph and Attention Network for 3D Human Pose Estimation
Despite substantial progress in 3D human pose estimation from a single-view image, prior works rarely explore global and local correlations, leading to insufficient learning of human skeleton representations. To address this issue, we propose a novel Interweaved Graph and Attention Network (IGANet) that allows bidirectional communications between graph convolutional networks (GCNs) and attentions. Specifically, we introduce an IGA module, where attentions are provided with local information from GCNs and GCNs are injected with global information from attentions. Additionally, we design a simple yet effective U-shaped multi-layer perceptron (uMLP), which can capture multi-granularity information for body joints. Extensive experiments on two popular benchmark datasets (i.e. Human3.6M and MPI-INF-3DHP) are conducted to evaluate our proposed method.The results show that IGANet achieves state-of-the-art performance on both datasets. Code is available at https://github.com/xiu-cs/IGANet.
Think on your Feet: Adaptive Thinking via Reinforcement Learning for Social Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current approaches. While existing methods either lack this kind of reasoning capability or enforce uniform long chain-of-thought reasoning across all scenarios, resulting in excessive token usage and inappropriate social simulation. In this paper, we propose Adaptive Mode Learning (AML) that strategically selects from four thinking modes (intuitive reaction rightarrow deep contemplation) based on real-time context. Our framework's core innovation, the Adaptive Mode Policy Optimization (AMPO) algorithm, introduces three key advancements over existing methods: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence tasks confirm that AML achieves 15.6% higher task performance than state-of-the-art methods. Notably, our method outperforms GRPO by 7.0% with 32.8% shorter reasoning chains. These results demonstrate that context-sensitive thinking mode selection, as implemented in AMPO, enables more human-like adaptive reasoning than GRPO's fixed-depth approach
FastAvatar: Towards Unified Fast High-Fidelity 3D Avatar Reconstruction with Large Gaussian Reconstruction Transformers
Despite significant progress in 3D avatar reconstruction, it still faces challenges such as high time complexity, sensitivity to data quality, and low data utilization. We propose FastAvatar, a feedforward 3D avatar framework capable of flexibly leveraging diverse daily recordings (e.g., a single image, multi-view observations, or monocular video) to reconstruct a high-quality 3D Gaussian Splatting (3DGS) model within seconds, using only a single unified model. FastAvatar's core is a Large Gaussian Reconstruction Transformer featuring three key designs: First, a variant VGGT-style transformer architecture aggregating multi-frame cues while injecting initial 3D prompt to predict an aggregatable canonical 3DGS representation; Second, multi-granular guidance encoding (camera pose, FLAME expression, head pose) mitigating animation-induced misalignment for variable-length inputs; Third, incremental Gaussian aggregation via landmark tracking and sliced fusion losses. Integrating these features, FastAvatar enables incremental reconstruction, i.e., improving quality with more observations, unlike prior work wasting input data. This yields a quality-speed-tunable paradigm for highly usable avatar modeling. Extensive experiments show that FastAvatar has higher quality and highly competitive speed compared to existing methods.
X-UniMotion: Animating Human Images with Expressive, Unified and Identity-Agnostic Motion Latents
We present X-UniMotion, a unified and expressive implicit latent representation for whole-body human motion, encompassing facial expressions, body poses, and hand gestures. Unlike prior motion transfer methods that rely on explicit skeletal poses and heuristic cross-identity adjustments, our approach encodes multi-granular motion directly from a single image into a compact set of four disentangled latent tokens -- one for facial expression, one for body pose, and one for each hand. These motion latents are both highly expressive and identity-agnostic, enabling high-fidelity, detailed cross-identity motion transfer across subjects with diverse identities, poses, and spatial configurations. To achieve this, we introduce a self-supervised, end-to-end framework that jointly learns the motion encoder and latent representation alongside a DiT-based video generative model, trained on large-scale, diverse human motion datasets. Motion-identity disentanglement is enforced via 2D spatial and color augmentations, as well as synthetic 3D renderings of cross-identity subject pairs under shared poses. Furthermore, we guide motion token learning with auxiliary decoders that promote fine-grained, semantically aligned, and depth-aware motion embeddings. Extensive experiments show that X-UniMotion outperforms state-of-the-art methods, producing highly expressive animations with superior motion fidelity and identity preservation.
Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model
With the power of large language models (LLMs), open-ended embodied agents can flexibly understand human instructions, generate interpretable guidance strategies, and output executable actions. Nowadays, Multi-modal Language Models~(MLMs) integrate multi-modal signals into LLMs, further bringing richer perception to entity agents and allowing embodied agents to perceive world-understanding tasks more delicately. However, existing works: 1) operate independently by agents, each containing multiple LLMs, from perception to action, resulting in gaps between complex tasks and execution; 2) train MLMs on static data, struggling with dynamics in open-ended scenarios; 3) input prior knowledge directly as prompts, suppressing application flexibility. We propose STEVE-2, a hierarchical knowledge distillation framework for open-ended embodied tasks, characterized by 1) a hierarchical system for multi-granular task division, 2) a mirrored distillation method for parallel simulation data, and 3) an extra expert model for bringing additional knowledge into parallel simulation. After distillation, embodied agents can complete complex, open-ended tasks without additional expert guidance, utilizing the performance and knowledge of a versatile MLM. Extensive evaluations on navigation and creation tasks highlight the superior performance of STEVE-2 in open-ended tasks, with 1.4 times - 7.3 times in performance.
S2-UniSeg: Fast Universal Agglomerative Pooling for Scalable Segment Anything without Supervision
Recent self-supervised image segmentation models have achieved promising performance on semantic segmentation and class-agnostic instance segmentation. However, their pretraining schedule is multi-stage, requiring a time-consuming pseudo-masks generation process between each training epoch. This time-consuming offline process not only makes it difficult to scale with training dataset size, but also leads to sub-optimal solutions due to its discontinuous optimization routine. To solve these, we first present a novel pseudo-mask algorithm, Fast Universal Agglomerative Pooling (UniAP). Each layer of UniAP can identify groups of similar nodes in parallel, allowing to generate both semantic-level and instance-level and multi-granular pseudo-masks within ens of milliseconds for one image. Based on the fast UniAP, we propose the Scalable Self-Supervised Universal Segmentation (S2-UniSeg), which employs a student and a momentum teacher for continuous pretraining. A novel segmentation-oriented pretext task, Query-wise Self-Distillation (QuerySD), is proposed to pretrain S2-UniSeg to learn the local-to-global correspondences. Under the same setting, S2-UniSeg outperforms the SOTA UnSAM model, achieving notable improvements of AP+6.9 on COCO, AR+11.1 on UVO, PixelAcc+4.5 on COCOStuff-27, RQ+8.0 on Cityscapes. After scaling up to a larger 2M-image subset of SA-1B, S2-UniSeg further achieves performance gains on all four benchmarks. Our code and pretrained models are available at https://github.com/bio-mlhui/S2-UniSeg
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available https://anonymous.4open.science/r/Amber-B203/.
TRISHUL: Towards Region Identification and Screen Hierarchy Understanding for Large VLM based GUI Agents
Recent advancements in Large Vision Language Models (LVLMs) have enabled the development of LVLM-based Graphical User Interface (GUI) agents under various paradigms. Training-based approaches, such as CogAgent and SeeClick, struggle with cross-dataset and cross-platform generalization due to their reliance on dataset-specific training. Generalist LVLMs, such as GPT-4V, employ Set-of-Marks (SoM) for action grounding, but obtaining SoM labels requires metadata like HTML source, which is not consistently available across platforms. Moreover, existing methods often specialize in singular GUI tasks rather than achieving comprehensive GUI understanding. To address these limitations, we introduce TRISHUL, a novel, training-free agentic framework that enhances generalist LVLMs for holistic GUI comprehension. Unlike prior works that focus on either action grounding (mapping instructions to GUI elements) or GUI referring (describing GUI elements given a location), TRISHUL seamlessly integrates both. At its core, TRISHUL employs Hierarchical Screen Parsing (HSP) and the Spatially Enhanced Element Description (SEED) module, which work synergistically to provide multi-granular, spatially, and semantically enriched representations of GUI elements. Our results demonstrate TRISHUL's superior performance in action grounding across the ScreenSpot, VisualWebBench, AITW, and Mind2Web datasets. Additionally, for GUI referring, TRISHUL surpasses the ToL agent on the ScreenPR benchmark, setting a new standard for robust and adaptable GUI comprehension.
DOGE: Towards Versatile Visual Document Grounding and Referring
In recent years, Multimodal Large Language Models (MLLMs) have increasingly emphasized grounding and referring capabilities to achieve detailed understanding and flexible user interaction. However, in the realm of visual document understanding, these capabilities lag behind due to the scarcity of fine-grained datasets and comprehensive benchmarks. To fill this gap, we propose the DOcument Grounding and Eferring data engine (DOGE-Engine), which produces two types of high-quality fine-grained document data: multi-granular parsing data for enhancing fundamental text localization and recognition capabilities; and instruction-tuning data to activate MLLM's grounding and referring capabilities during dialogue and reasoning. Additionally, using our engine, we construct DOGE-Bench, which encompasses 7 grounding and referring tasks across 3 document types (chart, poster, PDF document), providing comprehensive evaluations for fine-grained document understanding. Furthermore, leveraging the data generated by our engine, we develop a strong baseline model, DOGE. This pioneering MLLM is capable of accurately referring and grounding texts at multiple granularities within document images. Our code, data, and model will be open-sourced for community development.
R2-T2: Re-Routing in Test-Time for Multimodal Mixture-of-Experts
In large multimodal models (LMMs), the perception of non-language modalities (e.g., visual representations) is usually not on par with the large language models (LLMs)' powerful reasoning capabilities, deterring LMMs' performance on challenging downstream tasks. This weakness has been recently mitigated by replacing the vision encoder with a mixture-of-experts (MoE), which provides rich, multi-granularity, and diverse representations required by diverse downstream tasks. The performance of multimodal MoE largely depends on its router, which reweights and mixes the representations of different experts for each input. However, we find that the end-to-end trained router does not always produce the optimal routing weights for every test sample. To bridge the gap, we propose a novel and efficient method "Re-Routing in Test-Time(R2-T2) that locally optimizes the vector of routing weights in test-time by moving it toward those vectors of the correctly predicted samples in a neighborhood of the test sample. We propose three R2-T2 strategies with different optimization objectives and neighbor-search spaces. R2-T2 consistently and greatly improves state-of-the-art LMMs' performance on challenging benchmarks of diverse tasks, without training any base-model parameters.
Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more, evolving from Chain-of-Thought prompting to product-level solutions like OpenAI o1. Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks. In this paper, we present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of multi-modal large language models (MLLMs). Specifically, to create long and structured reasoning data without human labor, we design a two-step pipeline with a progressive strategy to generate sufficiently long and diverse reasoning paths and a multi-granularity assessment method to ensure data quality. We observe that directly supervising MLLMs with such long and complex reasoning data will not yield ideal reasoning ability. To tackle this problem, we design a multi-agent system consisting of a reasoning agent dedicated to performing long-chain reasoning and a summary agent trained to judge and summarize reasoning results. We further incorporate an iterative DPO algorithm to enhance the reasoning agent's generation stability and quality. Based on the popular LLaVA-NeXT model and our stronger base MLLM, we demonstrate significant performance gains across challenging multi-modal benchmarks requiring visual reasoning. Benefiting from our multi-agent system, Insight-V can also easily maintain or improve performance on perception-focused multi-modal tasks.
Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting
Document image parsing is challenging due to its complexly intertwined elements such as text paragraphs, figures, formulas, and tables. Current approaches either assemble specialized expert models or directly generate page-level content autoregressively, facing integration overhead, efficiency bottlenecks, and layout structure degradation despite their decent performance. To address these limitations, we present Dolphin (\textbf{Document Image Parsing via Heterogeneous Anchor Prompting}), a novel multimodal document image parsing model following an analyze-then-parse paradigm. In the first stage, Dolphin generates a sequence of layout elements in reading order. These heterogeneous elements, serving as anchors and coupled with task-specific prompts, are fed back to Dolphin for parallel content parsing in the second stage. To train Dolphin, we construct a large-scale dataset of over 30 million samples, covering multi-granularity parsing tasks. Through comprehensive evaluations on both prevalent benchmarks and self-constructed ones, Dolphin achieves state-of-the-art performance across diverse page-level and element-level settings, while ensuring superior efficiency through its lightweight architecture and parallel parsing mechanism. The code and pre-trained models are publicly available at https://github.com/ByteDance/Dolphin
Distillation Quantification for Large Language Models
Model distillation is a technique for transferring knowledge from large language models (LLMs) to smaller ones, aiming to create resource-efficient yet high-performing models. However, excessive distillation can lead to homogenization, reducing diversity among models and impairing their ability to robustly handle complex or novel tasks. These limitations underscore the need to systematically quantify the distillation process and its impact. In this work, we propose a framework to evaluate and quantify model distillation. Our method addresses two key aspects: (1) Identifying identity cognition contradictions to assess discrepancies in how models perceive and represent identity-related information, and (2) Analyzing multi-granularity response similarities across models to measure the extent of homogenization. Experimental results demonstrate two key insights: (1) Well-known closed-source and open-source LLMs usually exhibit high distillation degrees, except for Claude, Doubao, and Gemini. (2) Base LLMs show higher distillation degrees compared to aligned LLMs. By offering a systematic approach to improve the transparency of LLM data distillation, we call for LLMs with more independent development and more transparent technical reports to improve LLMs' robustness and safety. The code and data are available under https://github.com/Aegis1863/LLMs-Distillation-Quantification.
Empowering LLM to use Smartphone for Intelligent Task Automation
Mobile task automation is an attractive technique that aims to enable voice-based hands-free user interaction with smartphones. However, existing approaches suffer from poor scalability due to the limited language understanding ability and the non-trivial manual efforts required from developers or end-users. The recent advance of large language models (LLMs) in language understanding and reasoning inspires us to rethink the problem from a model-centric perspective, where task preparation, comprehension, and execution are handled by a unified language model. In this work, we introduce AutoDroid, a mobile task automation system that can handle arbitrary tasks on any Android application without manual efforts. The key insight is to combine the commonsense knowledge of LLMs and domain-specific knowledge of apps through automated dynamic analysis. The main components include a functionality-aware UI representation method that bridges the UI with the LLM, exploration-based memory injection techniques that augment the app-specific domain knowledge of LLM, and a multi-granularity query optimization module that reduces the cost of model inference. We integrate AutoDroid with off-the-shelf LLMs including online GPT-4/GPT-3.5 and on-device Vicuna, and evaluate its performance on a new benchmark for memory-augmented Android task automation with 158 common tasks. The results demonstrated that AutoDroid is able to precisely generate actions with an accuracy of 90.9%, and complete tasks with a success rate of 71.3%, outperforming the GPT-4-powered baselines by 36.4% and 39.7%. The demo, benchmark suites, and source code of AutoDroid will be released at url{https://autodroid-sys.github.io/}.
LLMScore: Unveiling the Power of Large Language Models in Text-to-Image Synthesis Evaluation
Existing automatic evaluation on text-to-image synthesis can only provide an image-text matching score, without considering the object-level compositionality, which results in poor correlation with human judgments. In this work, we propose LLMScore, a new framework that offers evaluation scores with multi-granularity compositionality. LLMScore leverages the large language models (LLMs) to evaluate text-to-image models. Initially, it transforms the image into image-level and object-level visual descriptions. Then an evaluation instruction is fed into the LLMs to measure the alignment between the synthesized image and the text, ultimately generating a score accompanied by a rationale. Our substantial analysis reveals the highest correlation of LLMScore with human judgments on a wide range of datasets (Attribute Binding Contrast, Concept Conjunction, MSCOCO, DrawBench, PaintSkills). Notably, our LLMScore achieves Kendall's tau correlation with human evaluations that is 58.8% and 31.2% higher than the commonly-used text-image matching metrics CLIP and BLIP, respectively.
Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset
Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.
HDLxGraph: Bridging Large Language Models and HDL Repositories via HDL Graph Databases
Large Language Models (LLMs) have demonstrated their potential in hardware design tasks, such as Hardware Description Language (HDL) generation and debugging. Yet, their performance in real-world, repository-level HDL projects with thousands or even tens of thousands of code lines is hindered. To this end, we propose HDLxGraph, a novel framework that integrates Graph Retrieval Augmented Generation (Graph RAG) with LLMs, introducing HDL-specific graph representations by incorporating Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs) to capture both code graph view and hardware graph view. HDLxGraph utilizes a dual-retrieval mechanism that not only mitigates the limited recall issues inherent in similarity-based semantic retrieval by incorporating structural information, but also enhances its extensibility to various real-world tasks by a task-specific retrieval finetuning. Additionally, to address the lack of comprehensive HDL search benchmarks, we introduce HDLSearch, a multi-granularity evaluation dataset derived from real-world repository-level projects. Experimental results demonstrate that HDLxGraph significantly improves average search accuracy, debugging efficiency and completion quality by 12.04%, 12.22% and 5.04% compared to similarity-based RAG, respectively. The code of HDLxGraph and collected HDLSearch benchmark are available at https://github.com/Nick-Zheng-Q/HDLxGraph.
FAIT: Fault-Aware Fine-Tuning for Better Code Generation
Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
GCDance: Genre-Controlled 3D Full Body Dance Generation Driven By Music
Generating high-quality full-body dance sequences from music is a challenging task as it requires strict adherence to genre-specific choreography. Moreover, the generated sequences must be both physically realistic and precisely synchronized with the beats and rhythm of the music. To overcome these challenges, we propose GCDance, a classifier-free diffusion framework for generating genre-specific dance motions conditioned on both music and textual prompts. Specifically, our approach extracts music features by combining high-level pre-trained music foundation model features with hand-crafted features for multi-granularity feature fusion. To achieve genre controllability, we leverage CLIP to efficiently embed genre-based textual prompt representations at each time step within our dance generation pipeline. Our GCDance framework can generate diverse dance styles from the same piece of music while ensuring coherence with the rhythm and melody of the music. Extensive experimental results obtained on the FineDance dataset demonstrate that GCDance significantly outperforms the existing state-of-the-art approaches, which also achieve competitive results on the AIST++ dataset. Our ablation and inference time analysis demonstrate that GCDance provides an effective solution for high-quality music-driven dance generation.
g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks
We introduce Generalizable 3D-Language Feature Fields (g3D-LF), a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks. Our g3D-LF processes posed RGB-D images from agents to encode feature fields for: 1) Novel view representation predictions from any position in the 3D scene; 2) Generations of BEV maps centered on the agent; 3) Querying targets using multi-granularity language within the above-mentioned representations. Our representation can be generalized to unseen environments, enabling real-time construction and dynamic updates. By volume rendering latent features along sampled rays and integrating semantic and spatial relationships through multiscale encoders, our g3D-LF produces representations at different scales and perspectives, aligned with multi-granularity language, via multi-level contrastive learning. Furthermore, we prepare a large-scale 3D-language dataset to align the representations of the feature fields with language. Extensive experiments on Vision-and-Language Navigation under both Panorama and Monocular settings, Zero-shot Object Navigation, and Situated Question Answering tasks highlight the significant advantages and effectiveness of our g3D-LF for embodied tasks.
Light-PEFT: Lightening Parameter-Efficient Fine-Tuning via Early Pruning
Parameter-efficient fine-tuning (PEFT) has emerged as the predominant technique for fine-tuning in the era of large language models. However, existing PEFT methods still have inadequate training efficiency. Firstly, the utilization of large-scale foundation models during the training process is excessively redundant for certain fine-tuning tasks. Secondly, as the model size increases, the growth in trainable parameters of empirically added PEFT modules becomes non-negligible and redundant, leading to inefficiency. To achieve task-specific efficient fine-tuning, we propose the Light-PEFT framework, which includes two methods: Masked Early Pruning of the Foundation Model and Multi-Granularity Early Pruning of PEFT. The Light-PEFT framework allows for the simultaneous estimation of redundant parameters in both the foundation model and PEFT modules during the early stage of training. These parameters can then be pruned for more efficient fine-tuning. We validate our approach on GLUE, SuperGLUE, QA tasks, and various models. With Light-PEFT, parameters of the foundation model can be pruned by up to over 40%, while still controlling trainable parameters to be only 25% of the original PEFT method. Compared to utilizing the PEFT method directly, Light-PEFT achieves training and inference speedup, reduces memory usage, and maintains comparable performance and the plug-and-play feature of PEFT.
RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis
Developing generalist foundation model has recently attracted tremendous attention among researchers in the field of AI for Medicine (AI4Medicine). A pivotal insight in developing these models is their reliance on dataset scaling, which emphasizes the requirements on developing open-source medical image datasets that incorporate diverse supervision signals across various imaging modalities. In this paper, we introduce RadGenome-Chest CT, a comprehensive, large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE. Specifically, we leverage the latest powerful universal segmentation and large language models, to extend the original datasets (over 25,692 non-contrast 3D chest CT volume and reports from 20,000 patients) from the following aspects: (i) organ-level segmentation masks covering 197 categories, which provide intermediate reasoning visual clues for interpretation; (ii) 665 K multi-granularity grounded reports, where each sentence of the report is linked to the corresponding anatomical region of CT volume in the form of a segmentation mask; (iii) 1.3 M grounded VQA pairs, where questions and answers are all linked with reference segmentation masks, enabling models to associate visual evidence with textual explanations. All grounded reports and VQA pairs in the validation set have gone through manual verification to ensure dataset quality. We believe that RadGenome-Chest CT can significantly advance the development of multimodal medical foundation models, by training to generate texts based on given segmentation regions, which is unattainable with previous relevant datasets. We will release all segmentation masks, grounded reports, and VQA pairs to facilitate further research and development in this field.
VCSUM: A Versatile Chinese Meeting Summarization Dataset
Compared to news and chat summarization, the development of meeting summarization is hugely decelerated by the limited data. To this end, we introduce a versatile Chinese meeting summarization dataset, dubbed VCSum, consisting of 239 real-life meetings, with a total duration of over 230 hours. We claim our dataset is versatile because we provide the annotations of topic segmentation, headlines, segmentation summaries, overall meeting summaries, and salient sentences for each meeting transcript. As such, the dataset can adapt to various summarization tasks or methods, including segmentation-based summarization, multi-granularity summarization and retrieval-then-generate summarization. Our analysis confirms the effectiveness and robustness of VCSum. We also provide a set of benchmark models regarding different downstream summarization tasks on VCSum to facilitate further research. The dataset and code will be released at https://github.com/hahahawu/VCSum.
InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training
In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm.
CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals, and can be applied in various fields. In the medical field, LVLMs have a high potential to offer substantial assistance for diagnosis and treatment. Before that, it is crucial to develop benchmarks to evaluate LVLMs' effectiveness in various medical applications. Current benchmarks are often built upon specific academic literature, mainly focusing on a single domain, and lacking varying perceptual granularities. Thus, they face specific challenges, including limited clinical relevance, incomplete evaluations, and insufficient guidance for interactive LVLMs. To address these limitations, we developed the GMAI-MMBench, the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date. It is constructed from 285 datasets across 39 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format. Additionally, we implemented a lexical tree structure that allows users to customize evaluation tasks, accommodating various assessment needs and substantially supporting medical AI research and applications. We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o only achieves an accuracy of 52%, indicating significant room for improvement. Moreover, we identified five key insufficiencies in current cutting-edge LVLMs that need to be addressed to advance the development of better medical applications. We believe that GMAI-MMBench will stimulate the community to build the next generation of LVLMs toward GMAI. Project Page: https://uni-medical.github.io/GMAI-MMBench.github.io/
F$^3$Set: Towards Analyzing Fast, Frequent, and Fine-grained Events from Videos
Analyzing Fast, Frequent, and Fine-grained (F^3) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the F^3 criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce F^3Set, a benchmark that consists of video datasets for precise F^3 event detection. Datasets in F^3Set are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, F^3Set contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on F^3Set, revealing substantial challenges for existing techniques. Additionally, we propose a new method, F^3ED, for F^3 event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.
GEMA-Score: Granular Explainable Multi-Agent Score for Radiology Report Evaluation
Automatic medical report generation supports clinical diagnosis, reduces the workload of radiologists, and holds the promise of improving diagnosis consistency. However, existing evaluation metrics primarily assess the accuracy of key medical information coverage in generated reports compared to human-written reports, while overlooking crucial details such as the location and certainty of reported abnormalities. These limitations hinder the comprehensive assessment of the reliability of generated reports and pose risks in their selection for clinical use. Therefore, we propose a Granular Explainable Multi-Agent Score (GEMA-Score) in this paper, which conducts both objective quantification and subjective evaluation through a large language model-based multi-agent workflow. Our GEMA-Score parses structured reports and employs NER-F1 calculations through interactive exchanges of information among agents to assess disease diagnosis, location, severity, and uncertainty. Additionally, an LLM-based scoring agent evaluates completeness, readability, and clinical terminology while providing explanatory feedback. Extensive experiments validate that GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset, demonstrating its effectiveness in clinical scoring (Kendall coefficient = 0.70 for Rexval dataset and Kendall coefficient = 0.54 for RadEvalX dataset). The anonymous project demo is available at: https://github.com/Zhenxuan-Zhang/GEMA_score.
ByteScience: Bridging Unstructured Scientific Literature and Structured Data with Auto Fine-tuned Large Language Model in Token Granularity
Natural Language Processing (NLP) is widely used to supply summarization ability from long context to structured information. However, extracting structured knowledge from scientific text by NLP models remains a challenge because of its domain-specific nature to complex data preprocessing and the granularity of multi-layered device-level information. To address this, we introduce ByteScience, a non-profit cloud-based auto fine-tuned Large Language Model (LLM) platform, which is designed to extract structured scientific data and synthesize new scientific knowledge from vast scientific corpora. The platform capitalizes on DARWIN, an open-source, fine-tuned LLM dedicated to natural science. The platform was built on Amazon Web Services (AWS) and provides an automated, user-friendly workflow for custom model development and data extraction. The platform achieves remarkable accuracy with only a small amount of well-annotated articles. This innovative tool streamlines the transition from the science literature to structured knowledge and data and benefits the advancements in natural informatics.
Unsupervised Domain Adaptation with Global and Local Graph Neural Networks in Limited Labeled Data Scenario: Application to Disaster Management
Identification and categorization of social media posts generated during disasters are crucial to reduce the sufferings of the affected people. However, lack of labeled data is a significant bottleneck in learning an effective categorization system for a disaster. This motivates us to study the problem as unsupervised domain adaptation (UDA) between a previous disaster with labeled data (source) and a current disaster (target). However, if the amount of labeled data available is limited, it restricts the learning capabilities of the model. To handle this challenge, we utilize limited labeled data along with abundantly available unlabeled data, generated during a source disaster to propose a novel two-part graph neural network. The first-part extracts domain-agnostic global information by constructing a token level graph across domains and the second-part preserves local instance-level semantics. In our experiments, we show that the proposed method outperforms state-of-the-art techniques by 2.74% weighted F_1 score on average on two standard public dataset in the area of disaster management. We also report experimental results for granular actionable multi-label classification datasets in disaster domain for the first time, on which we outperform BERT by 3.00% on average w.r.t weighted F_1. Additionally, we show that our approach can retain performance when very limited labeled data is available.
GEXIA: Granularity Expansion and Iterative Approximation for Scalable Multi-grained Video-language Learning
In various video-language learning tasks, the challenge of achieving cross-modality alignment with multi-grained data persists. We propose a method to tackle this challenge from two crucial perspectives: data and modeling. Given the absence of a multi-grained video-text pretraining dataset, we introduce a Granularity EXpansion (GEX) method with Integration and Compression operations to expand the granularity of a single-grained dataset. To better model multi-grained data, we introduce an Iterative Approximation Module (IAM), which embeds multi-grained videos and texts into a unified, low-dimensional semantic space while preserving essential information for cross-modal alignment. Furthermore, GEXIA is highly scalable with no restrictions on the number of video-text granularities for alignment. We evaluate our work on three categories of video tasks across seven benchmark datasets, showcasing state-of-the-art or comparable performance. Remarkably, our model excels in tasks involving long-form video understanding, even though the pretraining dataset only contains short video clips.
Multi-LexSum: Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities
With the advent of large language models, methods for abstractive summarization have made great strides, creating potential for use in applications to aid knowledge workers processing unwieldy document collections. One such setting is the Civil Rights Litigation Clearinghouse (CRLC) (https://clearinghouse.net),which posts information about large-scale civil rights lawsuits, serving lawyers, scholars, and the general public. Today, summarization in the CRLC requires extensive training of lawyers and law students who spend hours per case understanding multiple relevant documents in order to produce high-quality summaries of key events and outcomes. Motivated by this ongoing real-world summarization effort, we introduce Multi-LexSum, a collection of 9,280 expert-authored summaries drawn from ongoing CRLC writing. Multi-LexSum presents a challenging multi-document summarization task given the length of the source documents, often exceeding two hundred pages per case. Furthermore, Multi-LexSum is distinct from other datasets in its multiple target summaries, each at a different granularity (ranging from one-sentence "extreme" summaries to multi-paragraph narrations of over five hundred words). We present extensive analysis demonstrating that despite the high-quality summaries in the training data (adhering to strict content and style guidelines), state-of-the-art summarization models perform poorly on this task. We release Multi-LexSum for further research in summarization methods as well as to facilitate development of applications to assist in the CRLC's mission at https://multilexsum.github.io.
Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks
Large language models (LLMs) have recently shown tremendous promise in serving as the backbone to agentic systems, as demonstrated by their performance in multi-faceted, challenging benchmarks like SWE-Bench and Agent-Bench. However, to realize the true potential of LLMs as autonomous agents, they must learn to identify, call, and interact with external tools and application program interfaces (APIs) to complete complex tasks. These tasks together are termed function calling. Endowing LLMs with function calling abilities leads to a myriad of advantages, such as access to current and domain-specific information in databases and knowledge sources, and the ability to outsource tasks that can be reliably performed by tools, e.g., a Python interpreter or calculator. While there has been significant progress in function calling with LLMs, there is still a dearth of open models that perform on par with proprietary LLMs like GPT, Claude, and Gemini. Therefore, in this work, we introduce the GRANITE-20B-FUNCTIONCALLING model under an Apache 2.0 license. The model is trained using a multi-task training approach on seven fundamental tasks encompassed in function calling, those being Nested Function Calling, Function Chaining, Parallel Functions, Function Name Detection, Parameter-Value Pair Detection, Next-Best Function, and Response Generation. We present a comprehensive evaluation on multiple out-of-domain datasets comparing GRANITE-20B-FUNCTIONCALLING to more than 15 other best proprietary and open models. GRANITE-20B-FUNCTIONCALLING provides the best performance among all open models on the Berkeley Function Calling Leaderboard and fourth overall. As a result of the diverse tasks and datasets used for training our model, we show that GRANITE-20B-FUNCTIONCALLING has better generalizability on multiple tasks in seven different evaluation datasets.
Detecting fake news by enhanced text representation with multi-EDU-structure awareness
Since fake news poses a serious threat to society and individuals, numerous studies have been brought by considering text, propagation and user profiles. Due to the data collection problem, these methods based on propagation and user profiles are less applicable in the early stages. A good alternative method is to detect news based on text as soon as they are released, and a lot of text-based methods were proposed, which usually utilized words, sentences or paragraphs as basic units. But, word is a too fine-grained unit to express coherent information well, sentence or paragraph is too coarse to show specific information. Which granularity is better and how to utilize it to enhance text representation for fake news detection are two key problems. In this paper, we introduce Elementary Discourse Unit (EDU) whose granularity is between word and sentence, and propose a multi-EDU-structure awareness model to improve text representation for fake news detection, namely EDU4FD. For the multi-EDU-structure awareness, we build the sequence-based EDU representations and the graph-based EDU representations. The former is gotten by modeling the coherence between consecutive EDUs with TextCNN that reflect the semantic coherence. For the latter, we first extract rhetorical relations to build the EDU dependency graph, which can show the global narrative logic and help deliver the main idea truthfully. Then a Relation Graph Attention Network (RGAT) is set to get the graph-based EDU representation. Finally, the two EDU representations are incorporated as the enhanced text representation for fake news detection, using a gated recursive unit combined with a global attention mechanism. Experiments on four cross-source fake news datasets show that our model outperforms the state-of-the-art text-based methods.
Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization
LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
Encoding Multi-level Dynamics in Effect Heterogeneity Estimation
Earth Observation (EO) data are increasingly used in policy analysis by enabling granular estimation of treatment effects. However, a challenge in EO-based causal inference lies in balancing the trade-off between capturing fine-grained individual heterogeneity and broader contextual information. This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms. We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images to encode images of different scales with Causal Forests to obtain the final CATE estimate. We first perform simulation studies, showing how a multi-scale approach captures multi-level dynamics that single-scale ViT models fail to capture. We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery. In the RCT analysis, the Rank Average Treatment Effect Ratio (RATE Ratio) measure is employed to assess performance without ground truth individual treatment effects. Results indicate that Multi-scale Concatenation improves the performance of deep learning models in EO-based CATE estimation without the complexity of designing new multi-scale architectures for a specific use case.
Res2Net: A New Multi-scale Backbone Architecture
Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent performance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.
A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature
We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine.
SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.
Multi-Modal Interpretability for Enhanced Localization in Vision-Language Models
Recent advances in vision-language models have significantly expanded the frontiers of automated image analysis. However, applying these models in safety-critical contexts remains challenging due to the complex relationships between objects, subtle visual cues, and the heightened demand for transparency and reliability. This paper presents the Multi-Modal Explainable Learning (MMEL) framework, designed to enhance the interpretability of vision-language models while maintaining high performance. Building upon prior work in gradient-based explanations for transformer architectures (Grad-eclip), MMEL introduces a novel Hierarchical Semantic Relationship Module that enhances model interpretability through multi-scale feature processing, adaptive attention weighting, and cross-modal alignment. Our approach processes features at multiple semantic levels to capture relationships between image regions at different granularities, applying learnable layer-specific weights to balance contributions across the model's depth. This results in more comprehensive visual explanations that highlight both primary objects and their contextual relationships with improved precision. Through extensive experiments on standard datasets, we demonstrate that by incorporating semantic relationship information into gradient-based attribution maps, MMEL produces more focused and contextually aware visualizations that better reflect how vision-language models process complex scenes. The MMEL framework generalizes across various domains, offering valuable insights into model decisions for applications requiring high interpretability and reliability.
Multi-modal preference alignment remedies regression of visual instruction tuning on language model
In production, multi-modal large language models (MLLMs) are expected to support multi-turn queries of interchanging image and text modalities. However, the current MLLMs trained with visual-question-answering (VQA) datasets could suffer from degradation, as VQA datasets lack the diversity and complexity of the original text instruction datasets which the underlying language model had been trained with. To address this challenging degradation, we first collect a lightweight (6k entries) VQA preference dataset where answers were annotated by Gemini for 5 quality metrics in a granular fashion, and investigate standard Supervised Fine-tuning, rejection sampling, Direct Preference Optimization (DPO), and SteerLM. Our findings indicate that the with DPO we are able to surpass instruction-following capabilities of the language model, achieving a 6.73 score on MT-Bench, compared to Vicuna's 6.57 and LLaVA's 5.99 despite small data scale. This enhancement in textual instruction proficiency correlates with boosted visual instruction performance (+4.9\% on MM-Vet, +6\% on LLaVA-Bench), with minimal alignment tax on visual knowledge benchmarks compared to previous RLHF approach. In conclusion, we propose a distillation-based multi-modal alignment model with fine-grained annotations on a small dataset that reconciles the textual and visual performance of MLLMs, restoring and boosting language capability after visual instruction tuning.
kabr-tools: Automated Framework for Multi-Species Behavioral Monitoring
A comprehensive understanding of animal behavior ecology depends on scalable approaches to quantify and interpret complex, multidimensional behavioral patterns. Traditional field observations are often limited in scope, time-consuming, and labor-intensive, hindering the assessment of behavioral responses across landscapes. To address this, we present kabr-tools (Kenyan Animal Behavior Recognition Tools), an open-source package for automated multi-species behavioral monitoring. This framework integrates drone-based video with machine learning systems to extract behavioral, social, and spatial metrics from wildlife footage. Our pipeline leverages object detection, tracking, and behavioral classification systems to generate key metrics, including time budgets, behavioral transitions, social interactions, habitat associations, and group composition dynamics. Compared to ground-based methods, drone-based observations significantly improved behavioral granularity, reducing visibility loss by 15% and capturing more transitions with higher accuracy and continuity. We validate kabr-tools through three case studies, analyzing 969 behavioral sequences, surpassing the capacity of traditional methods for data capture and annotation. We found that, like Plains zebras, vigilance in Grevy's zebras decreases with herd size, but, unlike Plains zebras, habitat has a negligible impact. Plains and Grevy's zebras exhibit strong behavioral inertia, with rare transitions to alert behaviors and observed spatial segregation between Grevy's zebras, Plains zebras, and giraffes in mixed-species herds. By enabling automated behavioral monitoring at scale, kabr-tools offers a powerful tool for ecosystem-wide studies, advancing conservation, biodiversity research, and ecological monitoring.
Exploring Conditional Multi-Modal Prompts for Zero-shot HOI Detection
Zero-shot Human-Object Interaction (HOI) detection has emerged as a frontier topic due to its capability to detect HOIs beyond a predefined set of categories. This task entails not only identifying the interactiveness of human-object pairs and localizing them but also recognizing both seen and unseen interaction categories. In this paper, we introduce a novel framework for zero-shot HOI detection using Conditional Multi-Modal Prompts, namely CMMP. This approach enhances the generalization of large foundation models, such as CLIP, when fine-tuned for HOI detection. Unlike traditional prompt-learning methods, we propose learning decoupled vision and language prompts for interactiveness-aware visual feature extraction and generalizable interaction classification, respectively. Specifically, we integrate prior knowledge of different granularity into conditional vision prompts, including an input-conditioned instance prior and a global spatial pattern prior. The former encourages the image encoder to treat instances belonging to seen or potentially unseen HOI concepts equally while the latter provides representative plausible spatial configuration of the human and object under interaction. Besides, we employ language-aware prompt learning with a consistency constraint to preserve the knowledge of the large foundation model to enable better generalization in the text branch. Extensive experiments demonstrate the efficacy of our detector with conditional multi-modal prompts, outperforming previous state-of-the-art on unseen classes of various zero-shot settings. The code and models are available at https://github.com/ltttpku/CMMP.
Multi-Iteration Multi-Stage Fine-Tuning of Transformers for Sound Event Detection with Heterogeneous Datasets
A central problem in building effective sound event detection systems is the lack of high-quality, strongly annotated sound event datasets. For this reason, Task 4 of the DCASE 2024 challenge proposes learning from two heterogeneous datasets, including audio clips labeled with varying annotation granularity and with different sets of possible events. We propose a multi-iteration, multi-stage procedure for fine-tuning Audio Spectrogram Transformers on the joint DESED and MAESTRO Real datasets. The first stage closely matches the baseline system setup and trains a CRNN model while keeping the pre-trained transformer model frozen. In the second stage, both CRNN and transformer are fine-tuned using heavily weighted self-supervised losses. After the second stage, we compute strong pseudo-labels for all audio clips in the training set using an ensemble of fine-tuned transformers. Then, in a second iteration, we repeat the two-stage training process and include a distillation loss based on the pseudo-labels, achieving a new single-model, state-of-the-art performance on the public evaluation set of DESED with a PSDS1 of 0.692. A single model and an ensemble, both based on our proposed training procedure, ranked first in Task 4 of the DCASE Challenge 2024.
TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and Agent Generation
The emergence of Large Language Models (LLMs) like ChatGPT has inspired the development of LLM-based agents capable of addressing complex, real-world tasks. However, these agents often struggle during task execution due to methodological constraints, such as error propagation and limited adaptability. To address this issue, we propose a multi-agent framework based on dynamic Task Decomposition and Agent Generation (TDAG). This framework dynamically decomposes complex tasks into smaller subtasks and assigns each to a specifically generated subagent, thereby enhancing adaptability in diverse and unpredictable real-world tasks. Simultaneously, existing benchmarks often lack the granularity needed to evaluate incremental progress in complex, multi-step tasks. In response, we introduce ItineraryBench in the context of travel planning, featuring interconnected, progressively complex tasks with a fine-grained evaluation system. ItineraryBench is designed to assess agents' abilities in memory, planning, and tool usage across tasks of varying complexity. Our experimental results reveal that TDAG significantly outperforms established baselines, showcasing its superior adaptability and context awareness in complex task scenarios.
Efficient Multi-Source Knowledge Transfer by Model Merging
While transfer learning is an advantageous strategy, it overlooks the opportunity to leverage knowledge from numerous available models online. Addressing this multi-source transfer learning problem is a promising path to boost adaptability and cut re-training costs. However, existing approaches are inherently coarse-grained, lacking the necessary precision for granular knowledge extraction and the aggregation efficiency required to fuse knowledge from either a large number of source models or those with high parameter counts. We address these limitations by leveraging Singular Value Decomposition (SVD) to first decompose each source model into its elementary, rank-one components. A subsequent aggregation stage then selects only the most salient components from all sources, thereby overcoming the previous efficiency and precision limitations. To best preserve and leverage the synthesized knowledge base, our method adapts to the target task by fine-tuning only the principal singular values of the merged matrix. In essence, this process only recalibrates the importance of top SVD components. The proposed framework allows for efficient transfer learning, is robust to perturbations both at the input level and in the parameter space (e.g., noisy or pruned sources), and scales well computationally.
MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks
Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
Exploring Multi-Grained Concept Annotations for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) excel in vision--language tasks by pre-training solely on coarse-grained concept annotations (e.g., image captions). We hypothesize that integrating fine-grained concept annotations (e.g., object labels and object regions) will further improve performance, as both data granularities complement each other in terms of breadth and depth in concept representation. We introduce a new dataset featuring Multimodal Multi-Grained Concept annotations (MMGiC) for MLLMs. In constructing MMGiC, we explore the impact of different data recipes on multimodal comprehension and generation. Our analyses reveal that multi-grained concept annotations integrate and complement each other, under our structured template and a general MLLM framework. We clearly explore and demonstrate the potential of MMGiC to help MLLMs better locate and learn concepts, aligning vision and language at multiple granularities. We further validate our hypothesis by investigating the fair comparison and effective collaboration between MMGiC and image--caption data on 12 multimodal comprehension and generation benchmarks, e.g., their appropriate combination achieve 3.95% and 2.34% absolute improvements over image--caption data alone on POPE and SEED-Bench. Code, data and models will be available at https://github.com/LooperXX/MMGiC.
Stable Diffusion Reference Only: Image Prompt and Blueprint Jointly Guided Multi-Condition Diffusion Model for Secondary Painting
Stable Diffusion and ControlNet have achieved excellent results in the field of image generation and synthesis. However, due to the granularity and method of its control, the efficiency improvement is limited for professional artistic creations such as comics and animation production whose main work is secondary painting. In the current workflow, fixing characters and image styles often need lengthy text prompts, and even requires further training through TextualInversion, DreamBooth or other methods, which is very complicated and expensive for painters. Therefore, we present a new method in this paper, Stable Diffusion Reference Only, a images-to-image self-supervised model that uses only two types of conditional images for precise control generation to accelerate secondary painting. The first type of conditional image serves as an image prompt, supplying the necessary conceptual and color information for generation. The second type is blueprint image, which controls the visual structure of the generated image. It is natively embedded into the original UNet, eliminating the need for ControlNet. We released all the code for the module and pipeline, and trained a controllable character line art coloring model at https://github.com/aihao2000/stable-diffusion-reference-only, that achieved state-of-the-art results in this field. This verifies the effectiveness of the structure and greatly improves the production efficiency of animations, comics, and fanworks.
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
The emergence of generative pre-trained models has facilitated the synthesis of high-quality text, but it has also posed challenges in identifying factual errors in the generated text. In particular: (1) A wider range of tasks now face an increasing risk of containing factual errors when handled by generative models. (2) Generated texts tend to be lengthy and lack a clearly defined granularity for individual facts. (3) There is a scarcity of explicit evidence available during the process of fact checking. With the above challenges in mind, in this paper, we propose FacTool, a task and domain agnostic framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT). Experiments on four different tasks (knowledge-based QA, code generation, mathematical reasoning, and scientific literature review) show the efficacy of the proposed method. We release the code of FacTool associated with ChatGPT plugin interface at https://github.com/GAIR-NLP/factool .
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.
Multi-level Matching Network for Multimodal Entity Linking
Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
HMGIE: Hierarchical and Multi-Grained Inconsistency Evaluation for Vision-Language Data Cleansing
Visual-textual inconsistency (VTI) evaluation plays a crucial role in cleansing vision-language data. Its main challenges stem from the high variety of image captioning datasets, where differences in content can create a range of inconsistencies (\eg, inconsistencies in scene, entities, entity attributes, entity numbers, entity interactions). Moreover, variations in caption length can introduce inconsistencies at different levels of granularity as well. To tackle these challenges, we design an adaptive evaluation framework, called Hierarchical and Multi-Grained Inconsistency Evaluation (HMGIE), which can provide multi-grained evaluations covering both accuracy and completeness for various image-caption pairs. Specifically, the HMGIE framework is implemented by three consecutive modules. Firstly, the semantic graph generation module converts the image caption to a semantic graph for building a structural representation of all involved semantic items. Then, the hierarchical inconsistency evaluation module provides a progressive evaluation procedure with a dynamic question-answer generation and evaluation strategy guided by the semantic graph, producing a hierarchical inconsistency evaluation graph (HIEG). Finally, the quantitative evaluation module calculates the accuracy and completeness scores based on the HIEG, followed by a natural language explanation about the detection results. Moreover, to verify the efficacy and flexibility of the proposed framework on handling different image captioning datasets, we construct MVTID, an image-caption dataset with diverse types and granularities of inconsistencies. Extensive experiments on MVTID and other benchmark datasets demonstrate the superior performance of the proposed HMGIE to current state-of-the-art methods.
ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts
Current protein language models (PLMs) learn protein representations mainly based on their sequences, thereby well capturing co-evolutionary information, but they are unable to explicitly acquire protein functions, which is the end goal of protein representation learning. Fortunately, for many proteins, their textual property descriptions are available, where their various functions are also described. Motivated by this fact, we first build the ProtDescribe dataset to augment protein sequences with text descriptions of their functions and other important properties. Based on this dataset, we propose the ProtST framework to enhance Protein Sequence pre-training and understanding by biomedical Texts. During pre-training, we design three types of tasks, i.e., unimodal mask prediction, multimodal representation alignment and multimodal mask prediction, to enhance a PLM with protein property information with different granularities and, at the same time, preserve the PLM's original representation power. On downstream tasks, ProtST enables both supervised learning and zero-shot prediction. We verify the superiority of ProtST-induced PLMs over previous ones on diverse representation learning benchmarks. Under the zero-shot setting, we show the effectiveness of ProtST on zero-shot protein classification, and ProtST also enables functional protein retrieval from a large-scale database without any function annotation.
OtterHD: A High-Resolution Multi-modality Model
In this paper, we present OtterHD-8B, an innovative multimodal model evolved from Fuyu-8B, specifically engineered to interpret high-resolution visual inputs with granular precision. Unlike conventional models that are constrained by fixed-size vision encoders, OtterHD-8B boasts the ability to handle flexible input dimensions, ensuring its versatility across various inference requirements. Alongside this model, we introduce MagnifierBench, an evaluation framework designed to scrutinize models' ability to discern minute details and spatial relationships of small objects. Our comparative analysis reveals that while current leading models falter on this benchmark, OtterHD-8B, particularly when directly processing high-resolution inputs, outperforms its counterparts by a substantial margin. The findings illuminate the structural variances in visual information processing among different models and the influence that the vision encoders' pre-training resolution disparities have on model effectiveness within such benchmarks. Our study highlights the critical role of flexibility and high-resolution input capabilities in large multimodal models and also exemplifies the potential inherent in the Fuyu architecture's simplicity for handling complex visual data.
MedEval: A Multi-Level, Multi-Task, and Multi-Domain Medical Benchmark for Language Model Evaluation
Curated datasets for healthcare are often limited due to the need of human annotations from experts. In this paper, we present MedEval, a multi-level, multi-task, and multi-domain medical benchmark to facilitate the development of language models for healthcare. MedEval is comprehensive and consists of data from several healthcare systems and spans 35 human body regions from 8 examination modalities. With 22,779 collected sentences and 21,228 reports, we provide expert annotations at multiple levels, offering a granular potential usage of the data and supporting a wide range of tasks. Moreover, we systematically evaluated 10 generic and domain-specific language models under zero-shot and finetuning settings, from domain-adapted baselines in healthcare to general-purposed state-of-the-art large language models (e.g., ChatGPT). Our evaluations reveal varying effectiveness of the two categories of language models across different tasks, from which we notice the importance of instruction tuning for few-shot usage of large language models. Our investigation paves the way toward benchmarking language models for healthcare and provides valuable insights into the strengths and limitations of adopting large language models in medical domains, informing their practical applications and future advancements.
Art Creation with Multi-Conditional StyleGANs
Creating meaningful art is often viewed as a uniquely human endeavor. A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions. In this paper, we introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art. Our approach is based on the StyleGAN neural network architecture, but incorporates a custom multi-conditional control mechanism that provides fine-granular control over characteristics of the generated paintings, e.g., with regard to the perceived emotion evoked in a spectator. For better control, we introduce the conditional truncation trick, which adapts the standard truncation trick for the conditional setting and diverse datasets. Finally, we develop a diverse set of evaluation techniques tailored to multi-conditional generation.
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
MacRAG: Compress, Slice, and Scale-up for Multi-Scale Adaptive Context RAG
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.
AutoPRM: Automating Procedural Supervision for Multi-Step Reasoning via Controllable Question Decomposition
Recent advancements in large language models (LLMs) have shown promise in multi-step reasoning tasks, yet their reliance on extensive manual labeling to provide procedural feedback remains a significant impediment. To address this challenge, in this paper, we propose a novel self-supervised framework AutoPRM that efficiently enhances the fine-tuning of LLMs for intricate reasoning challenges. Specifically, AutoPRM first decomposes complex problems into more manageable subquestions with a controllable granularity switch, then sequentially apply reinforcement learning to iteratively improve the subquestion solver. Additionally, we propose context-guided-decoding to avoid reward tampering and guide the subquestion solver towards the solution of the holistic problem. Extensive experiments show that AutoPRM significantly improves performance on mathematical and commonsense reasoning tasks over SOTA. More encouragingly, AutoPRM can be easily integrated with other orthogonal reasoning pipelines.
A Wireless Foundation Model for Multi-Task Prediction
With the growing complexity and dynamics of the mobile communication networks, accurately predicting key system parameters, such as channel state information (CSI), user location, and network traffic, has become essential for a wide range of physical (PHY)-layer and medium access control (MAC)-layer tasks. Although traditional deep learning (DL)-based methods have been widely applied to such prediction tasks, they often struggle to generalize across different scenarios and tasks. In response, we propose a unified foundation model for multi-task prediction in wireless networks that supports diverse prediction intervals. The proposed model enforces univariate decomposition to unify heterogeneous tasks, encodes granularity for interval awareness, and uses a causal Transformer backbone for accurate predictions. Additionally, we introduce a patch masking strategy during training to support arbitrary input lengths. After trained on large-scale datasets, the proposed foundation model demonstrates strong generalization to unseen scenarios and achieves zero-shot performance on new tasks that surpass traditional full-shot baselines.
ESPN: Memory-Efficient Multi-Vector Information Retrieval
Recent advances in large language models have demonstrated remarkable effectiveness in information retrieval (IR) tasks. While many neural IR systems encode queries and documents into single-vector representations, multi-vector models elevate the retrieval quality by producing multi-vector representations and facilitating similarity searches at the granularity of individual tokens. However, these models significantly amplify memory and storage requirements for retrieval indices by an order of magnitude. This escalation in index size renders the scalability of multi-vector IR models progressively challenging due to their substantial memory demands. We introduce Embedding from Storage Pipelined Network (ESPN) where we offload the entire re-ranking embedding tables to SSDs and reduce the memory requirements by 5-16x. We design a software prefetcher with hit rates exceeding 90%, improving SSD based retrieval up to 6.4x, and demonstrate that we can maintain near memory levels of query latency even for large query batch sizes.
Toward Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
The ambiguous annotation criteria lead to divergence of Chinese Word Segmentation (CWS) datasets in various granularities. Multi-criteria Chinese word segmentation aims to capture various annotation criteria among datasets and leverage their common underlying knowledge. In this paper, we propose a domain adaptive segmenter to exploit diverse criteria of various datasets. Our model is based on Bidirectional Encoder Representations from Transformers (BERT), which is responsible for introducing open-domain knowledge. Private and shared projection layers are proposed to capture domain-specific knowledge and common knowledge, respectively. We also optimize computational efficiency via distillation, quantization, and compiler optimization. Experiments show that our segmenter outperforms the previous state of the art (SOTA) models on 10 CWS datasets with superior efficiency.
Conditional Cross Attention Network for Multi-Space Embedding without Entanglement in Only a SINGLE Network
Many studies in vision tasks have aimed to create effective embedding spaces for single-label object prediction within an image. However, in reality, most objects possess multiple specific attributes, such as shape, color, and length, with each attribute composed of various classes. To apply models in real-world scenarios, it is essential to be able to distinguish between the granular components of an object. Conventional approaches to embedding multiple specific attributes into a single network often result in entanglement, where fine-grained features of each attribute cannot be identified separately. To address this problem, we propose a Conditional Cross-Attention Network that induces disentangled multi-space embeddings for various specific attributes with only a single backbone. Firstly, we employ a cross-attention mechanism to fuse and switch the information of conditions (specific attributes), and we demonstrate its effectiveness through a diverse visualization example. Secondly, we leverage the vision transformer for the first time to a fine-grained image retrieval task and present a simple yet effective framework compared to existing methods. Unlike previous studies where performance varied depending on the benchmark dataset, our proposed method achieved consistent state-of-the-art performance on the FashionAI, DARN, DeepFashion, and Zappos50K benchmark datasets.
A Hierarchical and Evolvable Benchmark for Fine-Grained Code Instruction Following with Multi-Turn Feedback
Large language models (LLMs) have advanced significantly in code generation, yet their ability to follow complex programming instructions with layered and diverse constraints remains underexplored. Existing benchmarks often prioritize functional correctness, overlooking the nuanced requirements found in real-world development. We introduce MultiCodeIF, a comprehensive benchmark designed to evaluate instruction-following in code generation across multiple dimensions: constraint type, hierarchical levels, and iterative refinement. Built upon a structured taxonomy of 9 categories and 27 constraint types, MultiCodeIF enables granular assessment of both functional and non-functional instruction adherence. Using an automated pipeline, ConstraGen, we synthesize and evolve 2,021 code tasks sourced from 14 programming languages, supporting multi-turn evaluation through feedback-driven task variants. Empirical evaluation of six state-of-the-art LLMs uncovers substantial performance disparities. The top-performing model, Claude-3-7-Sonnet, achieves 63.0% average constraint satisfaction, while smaller models like Qwen3-1.7B fall to 44.8%. Models perform well on explicit constraints, but struggle with implicit or abstract constraints. Tasks with multiple hierarchical constraints significantly reduce model success rates, from 54.5% in single-level to just 18.8% in multi-level scenarios. However, structured feedback enables progressive improvement: average constraint satisfaction rises from 63.0% to 83.4% over four iterative refinement rounds. MultiCodeIF provides a scalable, constraint-aware, and feedback-sensitive framework to benchmark LLMs under realistic code generation scenarios, bridging the gap between synthetic evaluations and real-world instruction complexity. The full benchmark dataset, evaluation pipeline, and source code are available at https://github.com/SYSUSELab/MultiCodeIF.
DocMMIR: A Framework for Document Multi-modal Information Retrieval
The rapid advancement of unsupervised representation learning and large-scale pre-trained vision-language models has significantly improved cross-modal retrieval tasks. However, existing multi-modal information retrieval (MMIR) studies lack a comprehensive exploration of document-level retrieval and suffer from the absence of cross-domain datasets at this granularity. To address this limitation, we introduce DocMMIR, a novel multi-modal document retrieval framework designed explicitly to unify diverse document formats and domains, including Wikipedia articles, scientific papers (arXiv), and presentation slides, within a comprehensive retrieval scenario. We construct a large-scale cross-domain multimodal benchmark, comprising 450K samples, which systematically integrates textual and visual information. Our comprehensive experimental analysis reveals substantial limitations in current state-of-the-art MLLMs (CLIP, BLIP2, SigLIP-2, ALIGN) when applied to our tasks, with only CLIP demonstrating reasonable zero-shot performance. Furthermore, we conduct a systematic investigation of training strategies, including cross-modal fusion methods and loss functions, and develop a tailored approach to train CLIP on our benchmark. This results in a +31% improvement in MRR@10 compared to the zero-shot baseline. All our data and code are released in https://github.com/J1mL1/DocMMIR.
Refining Czech GEC: Insights from a Multi-Experiment Approach
We present a grammar error correction (GEC) system that achieves state of the art for the Czech language. Our system is based on a neural network translation approach with the Transformer architecture, and its key feature is its real-time synthetic generation pipeline, which dynamically augments sentences with artificial errors by introducing both language-agnostic and Czech-specific errors. We conduct a comprehensive series of experiments, investigating the Czech GEC corpora as bases for synthetic error introduction, several error generation strategies, domain balancing, tokenization granularity, model size, and data scaling during fine-tuning. Additionally, we evaluate the performance of large language models (LLMs) on Czech GEC in both end-user and expert fine-tuning scenarios. Our best-performing model is superior both in performance and computational efficiency. The source code and the trained model links are available on https://github.com/ufal/tsd2025-gec.
RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining
Developing advanced medical imaging retrieval systems is challenging due to the varying definitions of `similar images' across different medical contexts. This challenge is compounded by the lack of large-scale, high-quality medical imaging retrieval datasets and benchmarks. In this paper, we propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities in a scalable and fully automatic manner. Using this approach, we construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans, providing detailed image-image ranking annotations conditioned on diverse anatomical structures. Furthermore, we develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks. These systems also enable flexible, effective image retrieval conditioned on specific anatomical structures described in text, achieving state-of-the-art results on 77 out of 78 metrics.
UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model
Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.
MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering
Recent advances in tabular question answering (QA) with large language models are constrained in their coverage and only answer questions over a single table. However, real-world queries are complex in nature, often over multiple tables in a relational database or web page. Single table questions do not involve common table operations such as set operations, Cartesian products (joins), or nested queries. Furthermore, multi-table operations often result in a tabular output, which necessitates table generation capabilities of tabular QA models. To fill this gap, we propose a new task of answering questions over multiple tables. Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers. To enable effective training, we build a pre-training dataset comprising of 132,645 SQL queries and tabular answers. Further, we evaluate the generated tables by introducing table-specific metrics of varying strictness assessing various levels of granularity of the table structure. MultiTabQA outperforms state-of-the-art single table QA models adapted to a multi-table QA setting by finetuning on three datasets: Spider, Atis and GeoQuery.
DM$^2$S$^2$: Deep Multi-Modal Sequence Sets with Hierarchical Modality Attention
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increases, several potential problems with the mid-fusion model structure arise, such as an increase in the dimensionality of the concatenated multimodal features and missing modalities. To address these problems, we propose a new concept that considers multimodal inputs as a set of sequences, namely, deep multimodal sequence sets (DM^2S^2). Our set-aware concept consists of three components that capture the relationships among multiple modalities: (a) a BERT-based encoder to handle the inter- and intra-order of elements in the sequences, (b) intra-modality residual attention (IntraMRA) to capture the importance of the elements in a modality, and (c) inter-modality residual attention (InterMRA) to enhance the importance of elements with modality-level granularity further. Our concept exhibits performance that is comparable to or better than the previous set-aware models. Furthermore, we demonstrate that the visualization of the learned InterMRA and IntraMRA weights can provide an interpretation of the prediction results.
RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning
Training large language models (LLMs) as interactive agents presents unique challenges including long-horizon decision making and interacting with stochastic environment feedback. While reinforcement learning (RL) has enabled progress in static tasks, multi-turn agent RL training remains underexplored. We propose StarPO (State-Thinking-Actions-Reward Policy Optimization), a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents. Our study on three stylized environments reveals three core findings. First, our agent RL training shows a recurring mode of Echo Trap where reward variance cliffs and gradient spikes; we address this with StarPO-S, a stabilized variant with trajectory filtering, critic incorporation, and decoupled clipping. Second, we find the shaping of RL rollouts would benefit from diverse initial states, medium interaction granularity and more frequent sampling. Third, we show that without fine-grained, reasoning-aware reward signals, agent reasoning hardly emerge through multi-turn RL and they may show shallow strategies or hallucinated thoughts. Code and environments are available at https://github.com/RAGEN-AI/RAGEN.
FINECAPTION: Compositional Image Captioning Focusing on Wherever You Want at Any Granularity
The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal tasks, enabling more sophisticated and accurate reasoning across various applications, including image and video captioning, visual question answering, and cross-modal retrieval. Despite their superior capabilities, VLMs struggle with fine-grained image regional composition information perception. Specifically, they have difficulty accurately aligning the segmentation masks with the corresponding semantics and precisely describing the compositional aspects of the referred regions. However, compositionality - the ability to understand and generate novel combinations of known visual and textual components - is critical for facilitating coherent reasoning and understanding across modalities by VLMs. To address this issue, we propose FINECAPTION, a novel VLM that can recognize arbitrary masks as referential inputs and process high-resolution images for compositional image captioning at different granularity levels. To support this endeavor, we introduce COMPOSITIONCAP, a new dataset for multi-grained region compositional image captioning, which introduces the task of compositional attribute-aware regional image captioning. Empirical results demonstrate the effectiveness of our proposed model compared to other state-of-the-art VLMs. Additionally, we analyze the capabilities of current VLMs in recognizing various visual prompts for compositional region image captioning, highlighting areas for improvement in VLM design and training.
Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval
Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.
Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models
We present SPHINX, a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings. First, for stronger vision-language alignment, we unfreeze the large language model (LLM) during pre-training, and introduce a weight mix strategy between LLMs trained by real-world and synthetic data. By directly integrating the weights from two domains, the mixed LLM can efficiently incorporate diverse semantics with favorable robustness. Then, to enable multi-purpose capabilities, we mix a variety of tasks for joint visual instruction tuning, and design task-specific instructions to avoid inter-task conflict. In addition to the basic visual question answering, we include more challenging tasks such as region-level understanding, caption grounding, document layout detection, and human pose estimation, contributing to mutual enhancement over different scenarios. Additionally, we propose to extract comprehensive visual embeddings from various network architectures, pre-training paradigms, and information granularity, providing language models with more robust image representations. Based on our proposed joint mixing, SPHINX exhibits superior multi-modal understanding capabilities on a wide range of applications. On top of this, we further propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images. With a mixing of different scales and high-resolution sub-images, SPHINX attains exceptional visual parsing and reasoning performance on existing evaluation benchmarks. We hope our work may cast a light on the exploration of joint mixing in future MLLM research. Code is released at https://github.com/Alpha-VLLM/LLaMA2-Accessory.
MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interaction
Universal multimodal embedding models have achieved great success in capturing semantic relevance between queries and candidates. However, current methods either condense queries and candidates into a single vector, potentially limiting the expressiveness for fine-grained information, or produce too many vectors that are prohibitively expensive for multi-vector retrieval. In this work, we introduce MetaEmbed, a new framework for multimodal retrieval that rethinks how multimodal embeddings are constructed and interacted with at scale. During training, a fixed number of learnable Meta Tokens are appended to the input sequence. At test-time, their last-layer contextualized representations serve as compact yet expressive multi-vector embeddings. Through the proposed Matryoshka Multi-Vector Retrieval training, MetaEmbed learns to organize information by granularity across multiple vectors. As a result, we enable test-time scaling in multimodal retrieval, where users can balance retrieval quality against efficiency demands by selecting the number of tokens used for indexing and retrieval interactions. Extensive evaluations on the Massive Multimodal Embedding Benchmark (MMEB) and the Visual Document Retrieval Benchmark (ViDoRe) confirm that MetaEmbed achieves state-of-the-art retrieval performance while scaling robustly to models with 32B parameters.
Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP
What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.
Unified Coarse-to-Fine Alignment for Video-Text Retrieval
The canonical approach to video-text retrieval leverages a coarse-grained or fine-grained alignment between visual and textual information. However, retrieving the correct video according to the text query is often challenging as it requires the ability to reason about both high-level (scene) and low-level (object) visual clues and how they relate to the text query. To this end, we propose a Unified Coarse-to-fine Alignment model, dubbed UCoFiA. Specifically, our model captures the cross-modal similarity information at different granularity levels. To alleviate the effect of irrelevant visual clues, we also apply an Interactive Similarity Aggregation module (ISA) to consider the importance of different visual features while aggregating the cross-modal similarity to obtain a similarity score for each granularity. Finally, we apply the Sinkhorn-Knopp algorithm to normalize the similarities of each level before summing them, alleviating over- and under-representation issues at different levels. By jointly considering the crossmodal similarity of different granularity, UCoFiA allows the effective unification of multi-grained alignments. Empirically, UCoFiA outperforms previous state-of-the-art CLIP-based methods on multiple video-text retrieval benchmarks, achieving 2.4%, 1.4% and 1.3% improvements in text-to-video retrieval R@1 on MSR-VTT, Activity-Net, and DiDeMo, respectively. Our code is publicly available at https://github.com/Ziyang412/UCoFiA.
PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model
As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
Revisiting the Integration of Convolution and Attention for Vision Backbone
Convolutions (Convs) and multi-head self-attentions (MHSAs) are typically considered alternatives to each other for building vision backbones. Although some works try to integrate both, they apply the two operators simultaneously at the finest pixel granularity. With Convs responsible for per-pixel feature extraction already, the question is whether we still need to include the heavy MHSAs at such a fine-grained level. In fact, this is the root cause of the scalability issue w.r.t. the input resolution for vision transformers. To address this important problem, we propose in this work to use MSHAs and Convs in parallel at different granularity levels instead. Specifically, in each layer, we use two different ways to represent an image: a fine-grained regular grid and a coarse-grained set of semantic slots. We apply different operations to these two representations: Convs to the grid for local features, and MHSAs to the slots for global features. A pair of fully differentiable soft clustering and dispatching modules is introduced to bridge the grid and set representations, thus enabling local-global fusion. Through extensive experiments on various vision tasks, we empirically verify the potential of the proposed integration scheme, named GLMix: by offloading the burden of fine-grained features to light-weight Convs, it is sufficient to use MHSAs in a few (e.g., 64) semantic slots to match the performance of recent state-of-the-art backbones, while being more efficient. Our visualization results also demonstrate that the soft clustering module produces a meaningful semantic grouping effect with only IN1k classification supervision, which may induce better interpretability and inspire new weakly-supervised semantic segmentation approaches. Code will be available at https://github.com/rayleizhu/GLMix.
AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis
Diffusion model is a promising approach to image generation and has been employed for Pose-Guided Person Image Synthesis (PGPIS) with competitive performance. While existing methods simply align the person appearance to the target pose, they are prone to overfitting due to the lack of a high-level semantic understanding on the source person image. In this paper, we propose a novel Coarse-to-Fine Latent Diffusion (CFLD) method for PGPIS. In the absence of image-caption pairs and textual prompts, we develop a novel training paradigm purely based on images to control the generation process of the pre-trained text-to-image diffusion model. A perception-refined decoder is designed to progressively refine a set of learnable queries and extract semantic understanding of person images as a coarse-grained prompt. This allows for the decoupling of fine-grained appearance and pose information controls at different stages, and thus circumventing the potential overfitting problem. To generate more realistic texture details, a hybrid-granularity attention module is proposed to encode multi-scale fine-grained appearance features as bias terms to augment the coarse-grained prompt. Both quantitative and qualitative experimental results on the DeepFashion benchmark demonstrate the superiority of our method over the state of the arts for PGPIS. Code is available at https://github.com/YanzuoLu/CFLD.
Graph of Verification: Structured Verification of LLM Reasoning with Directed Acyclic Graphs
Verifying the reliability of complex, multi-step reasoning in Large Language Models (LLMs) remains a fundamental challenge, as existing methods often lack both faithfulness and precision. To address this issue, we propose the Graph of Verification (GoV) framework. GoV offers three key contributions: First, it explicitly models the underlying deductive process as a directed acyclic graph (DAG), whether this structure is implicit or explicitly constructed. Second, it enforces a topological order over the DAG to guide stepwise verification. Third, GoV introduces the notion of customizable node blocks, which flexibly define the verification granularity, from atomic propositions to full paragraphs, while ensuring that all requisite premises derived from the graph are provided as contextual input for each verification unit. We evaluate GoV on the Number Triangle Summation task and the ProcessBench benchmark with varying levels of reasoning complexity. Experimental results show that GoV substantially improves verification accuracy, faithfulness, and error localization when compared to conventional end-to-end verification approaches. Our code and data are available at https://github.com/Frevor/Graph-of-Verification.
Learning to Summarize from LLM-generated Feedback
Developing effective text summarizers remains a challenge due to issues like hallucinations, key information omissions, and verbosity in LLM-generated summaries. This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness. We introduce FeedSum, a large-scale dataset containing multi-dimensional LLM feedback on summaries of varying quality across diverse domains. Our experiments show how feedback quality, dimensionality, and granularity influence preference learning, revealing that high-quality, multi-dimensional, fine-grained feedback significantly improves summary generation. We also compare two methods for using this feedback: supervised fine-tuning and direct preference optimization. Finally, we introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries, demonstrating that smaller models can achieve superior performance with appropriate training. The full dataset will be released soon. The SummLlama3-8B model is now available at https://huggingface.co/DISLab/SummLlama3-8B.
DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation
Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.
SkyEyeGPT: Unifying Remote Sensing Vision-Language Tasks via Instruction Tuning with Large Language Model
Large language models (LLMs) have recently been extended to the vision-language realm, obtaining impressive general multi-modal capabilities. However, the exploration of multi-modal large language models (MLLMs) for remote sensing (RS) data is still in its infancy, and the performance is not satisfactory. In this work, we introduce SkyEyeGPT, a unified multi-modal large language model specifically designed for RS vision-language understanding. To this end, we meticulously curate an RS multi-modal instruction tuning dataset, including single-task and multi-task conversation instructions. After manual verification, we obtain a high-quality RS instruction-following dataset with 968k samples. Our research demonstrates that with a simple yet effective design, SkyEyeGPT works surprisingly well on considerably different tasks without the need for extra encoding modules. Specifically, after projecting RS visual features to the language domain via an alignment layer, they are fed jointly with task-specific instructions into an LLM-based RS decoder to predict answers for RS open-ended tasks. In addition, we design a two-stage tuning method to enhance instruction-following and multi-turn dialogue ability at different granularities. Experiments on 8 datasets for RS vision-language tasks demonstrate SkyEyeGPT's superiority in image-level and region-level tasks, such as captioning and visual grounding. In particular, SkyEyeGPT exhibits encouraging results compared to GPT-4V in some qualitative tests. The online demo, code, and dataset will be released in https://github.com/ZhanYang-nwpu/SkyEyeGPT.
STimage-1K4M: A histopathology image-gene expression dataset for spatial transcriptomics
Recent advances in multi-modal algorithms have driven and been driven by the increasing availability of large image-text datasets, leading to significant strides in various fields, including computational pathology. However, in most existing medical image-text datasets, the text typically provides high-level summaries that may not sufficiently describe sub-tile regions within a large pathology image. For example, an image might cover an extensive tissue area containing cancerous and healthy regions, but the accompanying text might only specify that this image is a cancer slide, lacking the nuanced details needed for in-depth analysis. In this study, we introduce STimage-1K4M, a novel dataset designed to bridge this gap by providing genomic features for sub-tile images. STimage-1K4M contains 1,149 images derived from spatial transcriptomics data, which captures gene expression information at the level of individual spatial spots within a pathology image. Specifically, each image in the dataset is broken down into smaller sub-image tiles, with each tile paired with 15,000-30,000 dimensional gene expressions. With 4,293,195 pairs of sub-tile images and gene expressions, STimage-1K4M offers unprecedented granularity, paving the way for a wide range of advanced research in multi-modal data analysis an innovative applications in computational pathology, and beyond.
Bidirectional Attention Flow for Machine Comprehension
Machine comprehension (MC), answering a query about a given context paragraph, requires modeling complex interactions between the context and the query. Recently, attention mechanisms have been successfully extended to MC. Typically these methods use attention to focus on a small portion of the context and summarize it with a fixed-size vector, couple attentions temporally, and/or often form a uni-directional attention. In this paper we introduce the Bi-Directional Attention Flow (BIDAF) network, a multi-stage hierarchical process that represents the context at different levels of granularity and uses bi-directional attention flow mechanism to obtain a query-aware context representation without early summarization. Our experimental evaluations show that our model achieves the state-of-the-art results in Stanford Question Answering Dataset (SQuAD) and CNN/DailyMail cloze test.
KUDA: Keypoints to Unify Dynamics Learning and Visual Prompting for Open-Vocabulary Robotic Manipulation
With the rapid advancement of large language models (LLMs) and vision-language models (VLMs), significant progress has been made in developing open-vocabulary robotic manipulation systems. However, many existing approaches overlook the importance of object dynamics, limiting their applicability to more complex, dynamic tasks. In this work, we introduce KUDA, an open-vocabulary manipulation system that integrates dynamics learning and visual prompting through keypoints, leveraging both VLMs and learning-based neural dynamics models. Our key insight is that a keypoint-based target specification is simultaneously interpretable by VLMs and can be efficiently translated into cost functions for model-based planning. Given language instructions and visual observations, KUDA first assigns keypoints to the RGB image and queries the VLM to generate target specifications. These abstract keypoint-based representations are then converted into cost functions, which are optimized using a learned dynamics model to produce robotic trajectories. We evaluate KUDA on a range of manipulation tasks, including free-form language instructions across diverse object categories, multi-object interactions, and deformable or granular objects, demonstrating the effectiveness of our framework. The project page is available at http://kuda-dynamics.github.io.
H$^{\mathbf{3}}$DP: Triply-Hierarchical Diffusion Policy for Visuomotor Learning
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce Triply-Hierarchical Diffusion Policy~(H^{\mathbf{3}DP}), a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H^{3}DP contains 3 levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H^{3}DP yields a +27.5% average relative improvement over baselines across 44 simulation tasks and achieves superior performance in 4 challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
Scalable Graph Attention-based Instance Selection via Mini-Batch Sampling and Hierarchical Hashing
Instance selection (IS) is important in machine learning for reducing dataset size while keeping key characteristics. Current IS methods often struggle with capturing complex relationships in high-dimensional spaces and scale with large datasets. This paper introduces a graph attention-based instance selection (GAIS) method that uses attention mechanisms to identify informative instances through their structural relationships in graph representations. We present two approaches for scalable graph construction: a distance-based mini-batch sampling technique that reduces computation through strategic batch processing, and a hierarchical hashing approach that allows for efficient similarity computation through random projections. The mini-batch approach keeps class distributions through stratified sampling, while the hierarchical hashing method captures relationships at multiple granularities through single-level, multi-level, and multi-view variants. Experiments across 39 datasets show that GAIS achieves reduction rates above 96\% while maintaining or improving model performance relative to state-of-the-art IS methods. The findings shows that the distance-based mini-batch approach offers an optimal balance of efficiency and effectiveness for large-scale datasets, while multi-view variants provide superior performance for complex, high-dimensional data, demonstrating that attention-based importance scoring can effectively identify instances crucial for maintaining decision boundaries without requiring exhaustive pairwise comparisons.
ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction
Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce ColBERTv2, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6--10times.
ZeroMerge: Parameter-Free KV Cache Compression for Memory-Efficient Long-Context LLMs
The linear growth of key-value (KV) cache memory and quadratic computational complexity pose significant bottlenecks for large language models (LLMs) in long-context processing. While existing KV cache optimization methods address these challenges through token pruning or feature merging, they often suffer from irreversible information loss or require costly parameter retraining. We propose ZeroMerge, a dynamic zero-shot compression framework that achieves efficient cache management through three key innovations: (1) Fine-grained memory allocation guided by multi-dimensional token importance metrics at head-level granularity, (2) A residual merging mechanism that preserves critical context through compensated attention scoring, and (3) Parameter-free adaptation compatible with diverse LLM architectures without retraining. Comprehensive evaluations across LLaMA-2 model demonstrate that ZeroMerge maintains full-cache performance at 5\% compression ratios while doubling inference throughput at 40K token lengths. The method effectively balances memory efficiency, generation quality, and deployment flexibility, advancing practical long-context LLM applications. The code is available at https://github.com/SusCom-Lab/ZeroMerge.
StrandDesigner: Towards Practical Strand Generation with Sketch Guidance
Realistic hair strand generation is crucial for applications like computer graphics and virtual reality. While diffusion models can generate hairstyles from text or images, these inputs lack precision and user-friendliness. Instead, we propose the first sketch-based strand generation model, which offers finer control while remaining user-friendly. Our framework tackles key challenges, such as modeling complex strand interactions and diverse sketch patterns, through two main innovations: a learnable strand upsampling strategy that encodes 3D strands into multi-scale latent spaces, and a multi-scale adaptive conditioning mechanism using a transformer with diffusion heads to ensure consistency across granularity levels. Experiments on several benchmark datasets show our method outperforms existing approaches in realism and precision. Qualitative results further confirm its effectiveness. Code will be released at [GitHub](https://github.com/fighting-Zhang/StrandDesigner).
Bulk Modulus along Jamming Transition Lines of Bidisperse Granular Packings
We present 3D DEM simulations of bidisperse granular packings to investigate their jamming densities, phi_J, and dimensionless bulk moduli, K, as a function of the size ratio, delta, and the concentration of small particles, X_{mathrm S}. We determine the partial and total bulk moduli for each packing and report the jamming transition diagram, i.e., the density or volume fraction marking both the first and second transitions of the system. At a large enough size difference, e.g., delta le 0.22, X^{*}_{mathrm S} divides the diagram with most small particles either non-jammed or jammed jointly with large ones. We find that the bulk modulus K jumps at X^{*}_{mathrm S}(delta = 0.15) approx 0.21, at the maximum jamming density, where both particle species mix most efficiently, while for X_{mathrm S} < X^{*}_{mathrm S} K is decoupled in two scenarios as a result of the first and second jamming transition. Along the second transition, K rises relative to the values found at the first transition, however, is still small compared to K at X^{*}_{mathrm S}. While the first transition is sharp, the second is smooth, carried by small-large interactions, while the small-small contacts display a transition. This demonstrates that for low enough delta and X_{mathrm S}, the jamming of small particles indeed impacts the internal resistance of the system. Our new results will allow tuning the bulk modulus K or other properties, such as the wave speed, by choosing specific sizes and concentrations based on a better understanding of whether small particles contribute to the jammed structure or not, and how the micromechanical structure behaves at either transition.
Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design
Multi-cellular robot design aims to create robots comprised of numerous cells that can be efficiently controlled to perform diverse tasks. Previous research has demonstrated the ability to generate robots for various tasks, but these approaches often optimize robots directly in the vast design space, resulting in robots with complicated morphologies that are hard to control. In response, this paper presents a novel coarse-to-fine method for designing multi-cellular robots. Initially, this strategy seeks optimal coarse-grained robots and progressively refines them. To mitigate the challenge of determining the precise refinement juncture during the coarse-to-fine transition, we introduce the Hyperbolic Embeddings for Robot Design (HERD) framework. HERD unifies robots of various granularity within a shared hyperbolic space and leverages a refined Cross-Entropy Method for optimization. This framework enables our method to autonomously identify areas of exploration in hyperbolic space and concentrate on regions demonstrating promise. Finally, the extensive empirical studies on various challenging tasks sourced from EvoGym show our approach's superior efficiency and generalization capability.