Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9\% while improving accuracy by 2.3\%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.
Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions
This paper examines the role of cognitive biases in the decision-making processes of large language models (LLMs), challenging the conventional goal of eliminating all biases. We show that certain cognitive biases when properly balanced, can enhance decision-making efficiency through rational deviations and heuristic shortcuts. By introducing heuristic moderation and an abstention option, which allows LLMs to withhold responses when uncertain, we reduce error rates, improve decision accuracy, and optimize decision rates. Using the Balance Rigor and Utility (BRU) dataset, developed through expert collaboration, our findings demonstrate that targeted inspection of cognitive biases aligns LLM decisions more closely with human reasoning, enhancing reliability and suggesting strategies for future improvements. This approach offers a novel way to leverage cognitive biases to improve the practical utility of LLMs across various applications.
PC Agent: While You Sleep, AI Works -- A Cognitive Journey into Digital World
Imagine a world where AI can handle your work while you sleep - organizing your research materials, drafting a report, or creating a presentation you need for tomorrow. However, while current digital agents can perform simple tasks, they are far from capable of handling the complex real-world work that humans routinely perform. We present PC Agent, an AI system that demonstrates a crucial step toward this vision through human cognition transfer. Our key insight is that the path from executing simple "tasks" to handling complex "work" lies in efficiently capturing and learning from human cognitive processes during computer use. To validate this hypothesis, we introduce three key innovations: (1) PC Tracker, a lightweight infrastructure that efficiently collects high-quality human-computer interaction trajectories with complete cognitive context; (2) a two-stage cognition completion pipeline that transforms raw interaction data into rich cognitive trajectories by completing action semantics and thought processes; and (3) a multi-agent system combining a planning agent for decision-making with a grounding agent for robust visual grounding. Our preliminary experiments in PowerPoint presentation creation reveal that complex digital work capabilities can be achieved with a small amount of high-quality cognitive data - PC Agent, trained on just 133 cognitive trajectories, can handle sophisticated work scenarios involving up to 50 steps across multiple applications. This demonstrates the data efficiency of our approach, highlighting that the key to training capable digital agents lies in collecting human cognitive data. By open-sourcing our complete framework, including the data collection infrastructure and cognition completion methods, we aim to lower the barriers for the research community to develop truly capable digital agents.
From reactive to cognitive: brain-inspired spatial intelligence for embodied agents
Spatial cognition enables adaptive goal-directed behavior by constructing internal models of space. Robust biological systems consolidate spatial knowledge into three interconnected forms: landmarks for salient cues, route knowledge for movement trajectories, and survey knowledge for map-like representations. While recent advances in multi-modal large language models (MLLMs) have enabled visual-language reasoning in embodied agents, these efforts lack structured spatial memory and instead operate reactively, limiting their generalization and adaptability in complex real-world environments. Here we present Brain-inspired Spatial Cognition for Navigation (BSC-Nav), a unified framework for constructing and leveraging structured spatial memory in embodied agents. BSC-Nav builds allocentric cognitive maps from egocentric trajectories and contextual cues, and dynamically retrieves spatial knowledge aligned with semantic goals. Integrated with powerful MLLMs, BSC-Nav achieves state-of-the-art efficacy and efficiency across diverse navigation tasks, demonstrates strong zero-shot generalization, and supports versatile embodied behaviors in the real physical world, offering a scalable and biologically grounded path toward general-purpose spatial intelligence.
Optimizing Attention and Cognitive Control Costs Using Temporally-Layered Architectures
The current reinforcement learning framework focuses exclusively on performance, often at the expense of efficiency. In contrast, biological control achieves remarkable performance while also optimizing computational energy expenditure and decision frequency. We propose a Decision Bounded Markov Decision Process (DB-MDP), that constrains the number of decisions and computational energy available to agents in reinforcement learning environments. Our experiments demonstrate that existing reinforcement learning algorithms struggle within this framework, leading to either failure or suboptimal performance. To address this, we introduce a biologically-inspired, Temporally Layered Architecture (TLA), enabling agents to manage computational costs through two layers with distinct time scales and energy requirements. TLA achieves optimal performance in decision-bounded environments and in continuous control environments, it matches state-of-the-art performance while utilizing a fraction of the compute cost. Compared to current reinforcement learning algorithms that solely prioritize performance, our approach significantly lowers computational energy expenditure while maintaining performance. These findings establish a benchmark and pave the way for future research on energy and time-aware control.
Hardwired-Neurons Language Processing Units as General-Purpose Cognitive Substrates
The rapid advancement of Large Language Models (LLMs) has established language as a core general-purpose cognitive substrate, driving the demand for specialized Language Processing Units (LPUs) tailored for LLM inference. To overcome the growing energy consumption of LLM inference systems, this paper proposes a Hardwired-Neurons Language Processing Unit (HNLPU), which physically hardwires LLM weight parameters into the computational fabric, achieving several orders of magnitude computational efficiency improvement by extreme specialization. However, a significant challenge still lies in the scale of modern LLMs. An ideal estimation on hardwiring gpt-oss 120 B requires fabricating at least 6 billion dollars of photomask sets, rendering the straightforward solution economically impractical. Addressing this challenge, we propose the novel Metal-Embedding methodology. Instead of embedding weights in a 2D grid of silicon device cells, Metal-Embedding embeds weight parameters into the 3D topology of metal wires. This brings two benefits: (1) a 15x increase in density, and (2) 60 out of 70 layers of photomasks are made homogeneous across chips, including all EUV photomasks. In total, Metal-Embedding reduced the photomask cost by 112x, bringing the Non-Recurring Engineering (NRE) cost of HNLPU into an economically viable range. Experimental results show that HNLPU achieved 249,960 tokens/s (5,555x/85x of GPU/WSE), 36 tokens/J (1,047x/283x of GPU/WSE), 13,232 mm2 total die area (29% inscribed rectangular area in a 300 mm wafer), \$184M estimated NRE at 5 nm technology. Analysis shows that HNLPU achieved 8.57x cost-effectiveness and 230x carbon footprint reduction compared to H100 clusters, under an annual weight updating assumption.
Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning
Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability (L propto N^{0.068}), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.
CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient Reasoning Data Synthesis Across Dual-System Cognitive Tasks
Long chain-of-thought (CoT) prompting helps Large Language Models (LLMs) solve difficult problems, but very long traces often slow or even degrade performance on fast, intuitive "System-1" tasks. We introduce Connector-Aware Compact CoT (CAC-CoT) -- a method that deliberately restricts reasoning to a small, fixed set of connector phrases, steering the model toward concise and well -- structured explanations. Despite its simplicity, our synthetic method with Gemini-2.0-Flash yields a high-quality training quality. CAC-CoT achieves approximately 85% on GSM8K and approximately 40% on GPQA (System-2) while retaining approximately 90% on S1-Bench (System-1). Its reasoning traces average approximately 300 tokens(ART), about one-third the length of baseline traces, delivering higher efficiency without loss of accuracy.
QFFT, Question-Free Fine-Tuning for Adaptive Reasoning
Recent advancements in Long Chain-of-Thought (CoT) reasoning models have improved performance on complex tasks, but they suffer from overthinking, which generates redundant reasoning steps, especially for simple questions. This paper revisits the reasoning patterns of Long and Short CoT models, observing that the Short CoT patterns offer concise reasoning efficiently, while the Long CoT patterns excel in challenging scenarios where the Short CoT patterns struggle. To enable models to leverage both patterns, we propose Question-Free Fine-Tuning (QFFT), a fine-tuning approach that removes the input question during training and learns exclusively from Long CoT responses. This approach enables the model to adaptively employ both reasoning patterns: it prioritizes the Short CoT patterns and activates the Long CoT patterns only when necessary. Experiments on various mathematical datasets demonstrate that QFFT reduces average response length by more than 50\%, while achieving performance comparable to Supervised Fine-Tuning (SFT). Additionally, QFFT exhibits superior performance compared to SFT in noisy, out-of-domain, and low-resource scenarios.
Can Language Models Learn to Skip Steps?
Trained on vast corpora of human language, language models demonstrate emergent human-like reasoning abilities. Yet they are still far from true intelligence, which opens up intriguing opportunities to explore the parallels of humans and model behaviors. In this work, we study the ability to skip steps in reasoning - a hallmark of human expertise developed through practice. Unlike humans, who may skip steps to enhance efficiency or to reduce cognitive load, models do not inherently possess such motivations to minimize reasoning steps. To address this, we introduce a controlled framework that stimulates step-skipping behavior by iteratively refining models to generate shorter and accurate reasoning paths. Empirical results indicate that models can develop the step skipping ability under our guidance. Moreover, after fine-tuning on expanded datasets that include both complete and skipped reasoning sequences, the models can not only resolve tasks with increased efficiency without sacrificing accuracy, but also exhibit comparable and even enhanced generalization capabilities in out-of-domain scenarios. Our work presents the first exploration into human-like step-skipping ability and provides fresh perspectives on how such cognitive abilities can benefit AI models.
Explain Before You Answer: A Survey on Compositional Visual Reasoning
Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.
Query Rewriting via LLMs
Query rewriting is a classical technique for transforming complex declarative SQL queries into ``lean'' equivalents that are conducive to (a) faster execution from a performance perspective, and (b) better understanding from a developer perspective. The rewriting is typically achieved via transformation rules, but these rules are limited in scope and difficult to update in a production system. In recent times, LLM-based techniques have also been mooted, but they are prone to both semantic and syntactic errors. We investigate here, how the remarkable cognitive capabilities of LLMs can be leveraged for performant query rewriting while incorporating safeguards and optimizations to ensure correctness and efficiency. Our study shows that these goals can be progressively achieved through incorporation of (a) an ensemble suite of basic prompts, (b) database-sensitive prompts via redundancy removal and selectivity-based rewriting rules, and (c) LLM token probability-guided rewrite paths. Further, a suite of statistical and logic-based tools can be used to guard against errors produced by the model. We have implemented the above LLM-infused techniques in the LITHE system, and evaluated complex analytic queries from multiple benchmarks on contemporary database platforms. The results show significant improvements over SOTA rewriting techniques -- for instance, on TPC-DS, LITHE constructed productive (>1.5x speedup) rewrites for two-thirds of the query suite, delivering four times more coverage than SOTA. Further, the geometric mean of its estimated execution speedups was an order-of-magnitude jump over SOTA performance. In essence, LITHE offers a potent and robust LLM-based intermediary between enterprise applications and database engines.
ExpertGenQA: Open-ended QA generation in Specialized Domains
Generating high-quality question-answer pairs for specialized technical domains remains challenging, with existing approaches facing a tradeoff between leveraging expert examples and achieving topical diversity. We present ExpertGenQA, a protocol that combines few-shot learning with structured topic and style categorization to generate comprehensive domain-specific QA pairs. Using U.S. Federal Railroad Administration documents as a test bed, we demonstrate that ExpertGenQA achieves twice the efficiency of baseline few-shot approaches while maintaining 94.4% topic coverage. Through systematic evaluation, we show that current LLM-based judges and reward models exhibit strong bias toward superficial writing styles rather than content quality. Our analysis using Bloom's Taxonomy reveals that ExpertGenQA better preserves the cognitive complexity distribution of expert-written questions compared to template-based approaches. When used to train retrieval models, our generated queries improve top-1 accuracy by 13.02% over baseline performance, demonstrating their effectiveness for downstream applications in technical domains.
Compass-aligned Distributional Embeddings for Studying Semantic Differences across Corpora
Word2vec is one of the most used algorithms to generate word embeddings because of a good mix of efficiency, quality of the generated representations and cognitive grounding. However, word meaning is not static and depends on the context in which words are used. Differences in word meaning that depends on time, location, topic, and other factors, can be studied by analyzing embeddings generated from different corpora in collections that are representative of these factors. For example, language evolution can be studied using a collection of news articles published in different time periods. In this paper, we present a general framework to support cross-corpora language studies with word embeddings, where embeddings generated from different corpora can be compared to find correspondences and differences in meaning across the corpora. CADE is the core component of our framework and solves the key problem of aligning the embeddings generated from different corpora. In particular, we focus on providing solid evidence about the effectiveness, generality, and robustness of CADE. To this end, we conduct quantitative and qualitative experiments in different domains, from temporal word embeddings to language localization and topical analysis. The results of our experiments suggest that CADE achieves state-of-the-art or superior performance on tasks where several competing approaches are available, yet providing a general method that can be used in a variety of domains. Finally, our experiments shed light on the conditions under which the alignment is reliable, which substantially depends on the degree of cross-corpora vocabulary overlap.
Automated Review Generation Method Based on Large Language Models
Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.
Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement
Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner.
Dimensional Complexity and Algorithmic Efficiency
This paper uses the concept of algorithmic efficiency to present a unified theory of intelligence. Intelligence is defined informally, formally, and computationally. We introduce the concept of Dimensional complexity in algorithmic efficiency and deduce that an optimally efficient algorithm has zero Time complexity, zero Space complexity, and an infinite Dimensional complexity. This algorithm is used to generate the number line.
Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens
The recent rise of Large Reasoning Models (LRMs) has significantly improved multi-step reasoning performance, but often at the cost of generating excessively long reasoning chains. This paper revisits the efficiency of such reasoning processes through an information-theoretic lens, revealing a fundamental trade-off between reasoning length and semantic efficiency. We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution, respectively. Empirical analyses show that longer reasoning chains tend to exhibit higher information bias and diminishing information gain, especially for incorrect answers. Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high, improving efficiency while maintaining competitive accuracy. Compared to the Vanilla Think approach (default mode), our strategy yields a 1.10% improvement in average accuracy and a 50.80% reduction in token usage on QwQ-32B across six benchmark tasks spanning diverse reasoning types and difficulty levels, demonstrating superior efficiency and reasoning performance. These results underscore the promise of entropy-based methods for enhancing both accuracy and cost-effiiciency in large language model deployment.
Efficient Deep Neural Networks
The success of deep neural networks (DNNs) is attributable to three factors: increased compute capacity, more complex models, and more data. These factors, however, are not always present, especially for edge applications such as autonomous driving, augmented reality, and internet-of-things. Training DNNs requires a large amount of data, which is difficult to obtain. Edge devices such as mobile phones have limited compute capacity, and therefore, require specialized and efficient DNNs. However, due to the enormous design space and prohibitive training costs, designing efficient DNNs for different target devices is challenging. So the question is, with limited data, compute capacity, and model complexity, can we still successfully apply deep neural networks? This dissertation focuses on the above problems and improving the efficiency of deep neural networks at four levels. Model efficiency: we designed neural networks for various computer vision tasks and achieved more than 10x faster speed and lower energy. Data efficiency: we developed an advanced tool that enables 6.2x faster annotation of a LiDAR point cloud. We also leveraged domain adaptation to utilize simulated data, bypassing the need for real data. Hardware efficiency: we co-designed neural networks and hardware accelerators and achieved 11.6x faster inference. Design efficiency: the process of finding the optimal neural networks is time-consuming. Our automated neural architecture search algorithms discovered, using 421x lower computational cost than previous search methods, models with state-of-the-art accuracy and efficiency.
Chain of Draft: Thinking Faster by Writing Less
Large Language Models (LLMs) have demonstrated remarkable performance in solving complex reasoning tasks through mechanisms like Chain-of-Thought (CoT) prompting, which emphasizes verbose, step-by-step reasoning. However, humans typically employ a more efficient strategy: drafting concise intermediate thoughts that capture only essential information. In this work, we propose Chain of Draft (CoD), a novel paradigm inspired by human cognitive processes, where LLMs generate minimalistic yet informative intermediate reasoning outputs while solving tasks. By reducing verbosity and focusing on critical insights, CoD matches or surpasses CoT in accuracy while using as little as only 7.6% of the tokens, significantly reducing cost and latency across various reasoning tasks.
ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
Optimizing Length Compression in Large Reasoning Models
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
THINK-Bench: Evaluating Thinking Efficiency and Chain-of-Thought Quality of Large Reasoning Models
Large reasoning models (LRMs) have achieved impressive performance in complex tasks, often outperforming conventional large language models (LLMs). However, the prevalent issue of overthinking severely limits their computational efficiency. Overthinking occurs when models generate excessive and redundant tokens that contribute little to accurate outcomes, especially in simple tasks, resulting in a significant waste of computational resources. To systematically investigate this issue, we introduce Think-Bench, a benchmark designed to evaluate the reasoning efficiency of LRMs. We also propose novel efficiency metrics and conduct a comprehensive evaluation of various LRMs across multiple dimensions, including the reasoning process, outcome quality, and chain-of-thought (CoT) characteristics. Our analysis reveals that most LRMs exhibit overthinking in handling easy questions, generating unnecessarily lengthy reasoning chains. While many LRMs demonstrate high CoT quality, several suffer from low efficiency. We hope that Think-Bench can serve as a robust foundation for advancing research into LRMs.
Does Spatial Cognition Emerge in Frontier Models?
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition.
Plan and Budget: Effective and Efficient Test-Time Scaling on Large Language Model Reasoning
Large Language Models (LLMs) have achieved remarkable success in complex reasoning tasks, but their inference remains computationally inefficient. We observe a common failure mode in many prevalent LLMs, overthinking, where models generate verbose and tangential reasoning traces even for simple queries. Recent works have tried to mitigate this by enforcing fixed token budgets, however, this can lead to underthinking, especially on harder problems. Through empirical analysis, we identify that this inefficiency often stems from unclear problem-solving strategies. To formalize this, we develop a theoretical model, BBAM (Bayesian Budget Allocation Model), which models reasoning as a sequence of sub-questions with varying uncertainty, and introduce the E^3 metric to capture the trade-off between correctness and computation efficiency. Building on theoretical results from BBAM, we propose Plan-and-Budget, a model-agnostic, test-time framework that decomposes complex queries into sub-questions and allocates token budgets based on estimated complexity using adaptive scheduling. Plan-and-Budget improves reasoning efficiency across a range of tasks and models, achieving up to +70% accuracy gains, -39% token reduction, and +187.5% improvement in E^3. Notably, it elevates a smaller model (DS-Qwen-32B) to match the efficiency of a larger model (DS-LLaMA-70B)-demonstrating Plan-and-Budget's ability to close performance gaps without retraining. Our code is available at anonymous.4open.science/r/P-and-B-6513/.
Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
CoThink: Token-Efficient Reasoning via Instruct Models Guiding Reasoning Models
Large language models (LLMs) benefit from increased test-time compute, a phenomenon known as test-time scaling. However, reasoning-optimized models often overthink even simple problems, producing excessively verbose outputs and leading to low token efficiency. By comparing these models with equally sized instruct models, we identify two key causes of this verbosity: (1) reinforcement learning reduces the information density of forward reasoning, and (2) backward chain-of thought training encourages redundant and often unnecessary verification steps. Since LLMs cannot assess the difficulty of a given problem, they tend to apply the same cautious reasoning strategy across all tasks, resulting in inefficient overthinking. To address this, we propose CoThink, an embarrassingly simple pipeline: an instruct model first drafts a high-level solution outline; a reasoning model then works out the solution. We observe that CoThink enables dynamic adjustment of reasoning depth based on input difficulty. Evaluated with three reasoning models DAPO, DeepSeek-R1, and QwQ on three datasets GSM8K, MATH500, and AIME24, CoThink reduces total token generation by 22.3% while maintaining pass@1 accuracy within a 0.42% margin on average. With reference to the instruct model, we formally define reasoning efficiency and observe a potential reasoning efficiency scaling law in LLMs.
A Quantitative Review on Language Model Efficiency Research
Language models (LMs) are being scaled and becoming powerful. Improving their efficiency is one of the core research topics in neural information processing systems. Tay et al. (2022) provided a comprehensive overview of efficient Transformers that have become an indispensable staple in the field of NLP. However, in the section of "On Evaluation", they left an open question "which fundamental efficient Transformer one should consider," answered by "still a mystery" because "many research papers select their own benchmarks." Unfortunately, there was not quantitative analysis about the performances of Transformers on any benchmarks. Moreover, state space models (SSMs) have demonstrated their abilities of modeling long-range sequences with non-attention mechanisms, which were not discussed in the prior review. This article makes a meta analysis on the results from a set of papers on efficient Transformers as well as those on SSMs. It provides a quantitative review on LM efficiency research and gives suggestions for future research.
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task
This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
StyleBench: Evaluating thinking styles in Large Language Models
The effectiveness of Large Language Models (LLMs) is heavily influenced by the reasoning strategies, or styles of thought, employed in their prompts. However, the interplay between these reasoning styles, model architecture, and task type remains poorly understood. To address this, we introduce StyleBench, a comprehensive benchmark for systematically evaluating reasoning styles across diverse tasks and models. We assess five representative reasoning styles, including Chain of Thought (CoT), Tree of Thought (ToT), Algorithm of Thought (AoT), Sketch of Thought (SoT), and Chain-of-Draft (CoD) on five reasoning tasks, using 15 open-source models from major families (LLaMA, Qwen, Mistral, Gemma, GPT-OSS, Phi, and DeepSeek) ranging from 270M to 120B parameters. Our large-scale analysis reveals that no single style is universally optimal. We demonstrate that strategy efficacy is highly contingent on both model scale and task type: search-based methods (AoT, ToT) excel in open-ended problems but require large-scale models, while concise styles (SoT, CoD) achieve radical efficiency gains on well-defined tasks. Furthermore, we identify key behavioral patterns: smaller models frequently fail to follow output instructions and default to guessing, while reasoning robustness emerges as a function of scale. Our findings offer a crucial roadmap for selecting optimal reasoning strategies based on specific constraints, we open source the benchmark in https://github.com/JamesJunyuGuo/Style_Bench.
Unable to Forget: Proactive lnterference Reveals Working Memory Limits in LLMs Beyond Context Length
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
On the Measure of Intelligence
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
Spatially-Aware Transformer for Embodied Agents
Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.
Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Think Clearly: Improving Reasoning via Redundant Token Pruning
Recent large language models have shown promising capabilities in long-form reasoning, following structured chains of thought before arriving at a final answer. However, we observe that these reasoning paths tend to include substantial redundancy; analyzing attention patterns reveals that attention scores are widely scattered, particularly incorrect answers exhibit greater attention sparsity. In this paper, we demonstrate that deliberately removing this redundancy in the reasoning process significantly improves performance through clear thinking, i.e., removing distraction. Specifically, we systematically identify reasoning redundancy by measuring token-level attention scores to a special end-of-thinking token, which is appended to an explicit instruction inserted to conclude each intermediate reasoning step. Furthermore, we propose structure-aware pruning that prioritizes removing tokens in low-contributing reasoning chunks over individual tokens. After evicting redundant tokens, we remove the injected end-of-thinking instruction, then resume the reasoning generation. We demonstrate that our method significantly improves overall accuracy across reasoning-intensive benchmarks without any training involved. In particular, our method shows strong performance on challenging mathematical competition benchmarks such as AIME and AMC, where reasoning redundancy is more prevalent.
Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Development of Cognitive Intelligence in Pre-trained Language Models
Recent studies show evidence for emergent cognitive abilities in Large Pre-trained Language Models (PLMs). The increasing cognitive alignment of these models has made them candidates for cognitive science theories. Prior research into the emergent cognitive abilities of PLMs has largely been path-independent to model training, i.e., has focused on the final model weights and not the intermediate steps. However, building plausible models of human cognition using PLMs would benefit from considering the developmental alignment of their performance during training to the trajectories of children's thinking. Guided by psychometric tests of human intelligence, we choose four sets of tasks to investigate the alignment of ten popular families of PLMs and evaluate their available intermediate and final training steps. These tasks are Numerical ability, Linguistic abilities, Conceptual understanding, and Fluid reasoning. We find a striking regularity: regardless of model size, the developmental trajectories of PLMs consistently exhibit a window of maximal alignment to human cognitive development. Before that window, training appears to endow "blank slate" models with the requisite structure to be poised to rapidly learn from experience. After that window, training appears to serve the engineering goal of reducing loss but not the scientific goal of increasing alignment with human cognition.
PATS: Process-Level Adaptive Thinking Mode Switching
Current large-language models (LLMs) typically adopt a fixed reasoning strategy, either simple or complex, for all questions, regardless of their difficulty. This neglect of variation in task and reasoning process complexity leads to an imbalance between performance and efficiency. Existing methods attempt to implement training-free fast-slow thinking system switching to handle problems of varying difficulty, but are limited by coarse-grained solution-level strategy adjustments. To address this issue, we propose a novel reasoning paradigm: Process-Level Adaptive Thinking Mode Switching (PATS), which enables LLMs to dynamically adjust their reasoning strategy based on the difficulty of each step, optimizing the balance between accuracy and computational efficiency. Our approach integrates Process Reward Models (PRMs) with Beam Search, incorporating progressive mode switching and bad-step penalty mechanisms. Experiments on diverse mathematical benchmarks demonstrate that our methodology achieves high accuracy while maintaining moderate token usage. This study emphasizes the significance of process-level, difficulty-aware reasoning strategy adaptation, offering valuable insights into efficient inference for LLMs.
M3GIA: A Cognition Inspired Multilingual and Multimodal General Intelligence Ability Benchmark
As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.
Don't Think Longer, Think Wisely: Optimizing Thinking Dynamics for Large Reasoning Models
While recent success of large reasoning models (LRMs) significantly advanced LLMs' reasoning capability by optimizing the final answer accuracy using reinforcement learning, they may also drastically increase the output length due to overthinking, characterized by unnecessarily complex reasoning paths that waste computation and potentially degrade the performance. We hypothesize that such inefficiencies stem from LRMs' limited capability to dynamically select the proper modular reasoning strategies, termed thinking patterns at the right position. To investigate this hypothesis, we propose a dynamic optimization framework that segments model-generated reasoning paths into distinct thinking patterns, systematically identifying and promoting beneficial patterns that improve the answer while removing detrimental ones. Empirical analysis confirms that our optimized thinking paths yield more concise yet sufficiently informative trajectories, enhancing reasoning efficiency by reducing attention FLOPs by up to 47% while maintaining accuracy for originally correct responses. Moreover, a non-trivial portion of originally incorrect responses are transformed into correct ones, achieving a 15.6% accuracy improvement with reduced length. Motivated by the improvement brought by the optimized thinking paths, we apply a preference optimization technique supported by a pairwise dataset contrasting suboptimal and optimal reasoning paths. Experimental evaluations across multiple mathematical reasoning benchmarks reveal that our method notably reduces computational overhead while simultaneously improving reasoning accuracy, achieving up to a 12% accuracy improvement and reducing token usage from approximately 5,000 to 3,000 tokens.
Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
Working Memory Capacity of ChatGPT: An Empirical Study
Working memory is a critical aspect of both human intelligence and artificial intelligence, serving as a workspace for the temporary storage and manipulation of information. In this paper, we systematically assess the working memory capacity of ChatGPT (gpt-3.5-turbo), a large language model developed by OpenAI, by examining its performance in verbal and spatial n-back tasks under various conditions. Our experiments reveal that ChatGPT experiences significant declines in performance as n increases (which necessitates more information to be stored in working memory), suggesting a limit to the working memory capacity strikingly similar to that of humans. Furthermore, we investigate the impact of different instruction strategies on ChatGPT's performance and observe that the fundamental patterns of a capacity limit persist. From our empirical findings, we propose that n-back tasks may serve as tools for benchmarking the working memory capacity of large language models and hold potential for informing future efforts aimed at enhancing AI working memory and deepening our understanding of human working memory through AI models.
Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.
Generating and Evaluating Tests for K-12 Students with Language Model Simulations: A Case Study on Sentence Reading Efficiency
Developing an educational test can be expensive and time-consuming, as each item must be written by experts and then evaluated by collecting hundreds of student responses. Moreover, many tests require multiple distinct sets of questions administered throughout the school year to closely monitor students' progress, known as parallel tests. In this study, we focus on tests of silent sentence reading efficiency, used to assess students' reading ability over time. To generate high-quality parallel tests, we propose to fine-tune large language models (LLMs) to simulate how previous students would have responded to unseen items. With these simulated responses, we can estimate each item's difficulty and ambiguity. We first use GPT-4 to generate new test items following a list of expert-developed rules and then apply a fine-tuned LLM to filter the items based on criteria from psychological measurements. We also propose an optimal-transport-inspired technique for generating parallel tests and show the generated tests closely correspond to the original test's difficulty and reliability based on crowdworker responses. Our evaluation of a generated test with 234 students from grades 2 to 8 produces test scores highly correlated (r=0.93) to those of a standard test form written by human experts and evaluated across thousands of K-12 students.
Meta-R1: Empowering Large Reasoning Models with Metacognition
Large Reasoning Models (LRMs) demonstrate remarkable capabilities on complex tasks, exhibiting emergent, human-like thinking patterns. Despite their advances, we identify a fundamental limitation: current LRMs lack a dedicated meta-level cognitive system-an essential faculty in human cognition that enables "thinking about thinking". This absence leaves their emergent abilities uncontrollable (non-adaptive reasoning), unreliable (intermediate error), and inflexible (lack of a clear methodology). To address this gap, we introduce Meta-R1, a systematic and generic framework that endows LRMs with explicit metacognitive capabilities. Drawing on principles from cognitive science, Meta-R1 decomposes the reasoning process into distinct object-level and meta-level components, orchestrating proactive planning, online regulation, and adaptive early stopping within a cascaded framework. Experiments on three challenging benchmarks and against eight competitive baselines demonstrate that Meta-R1 is: (I) high-performing, surpassing state-of-the-art methods by up to 27.3%; (II) token-efficient, reducing token consumption to 15.7% ~ 32.7% and improving efficiency by up to 14.8% when compared to its vanilla counterparts; and (III) transferable, maintaining robust performance across datasets and model backbones.
Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations
Spatial cognition is essential for human intelligence, enabling problem-solving through visual simulations rather than solely relying on verbal reasoning. However, existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation. We introduce STARE(Spatial Transformations and Reasoning Evaluation), a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through multi-step visual simulation. STARE features 4K tasks spanning foundational geometric transformations (2D and 3D), integrated spatial reasoning (cube net folding and tangram puzzles), and real-world spatial reasoning (perspective and temporal reasoning), reflecting practical cognitive challenges like object assembly, mechanical diagram interpretation, and everyday spatial navigation. Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks like 3D cube net folding and tangram puzzles that require multi-step visual simulations. Humans achieve near-perfect accuracy but take considerable time (up to 28.9s) on complex tasks, significantly speeding up (down by 7.5 seconds on average) with intermediate visual simulations. In contrast, models exhibit inconsistent performance gains from visual simulations, improving on most tasks but declining in specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively leverage intermediate visual information.
Think Before You Act: Decision Transformers with Internal Working Memory
Large language model (LLM)-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and compute. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired, we propose an internal working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in both Atari games and meta-world object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
S1-Bench: A Simple Benchmark for Evaluating System 1 Thinking Capability of Large Reasoning Models
We introduce S1-Bench, a novel benchmark designed to evaluate Large Reasoning Models' (LRMs) performance on simple tasks that favor intuitive system 1 thinking rather than deliberative system 2 reasoning. While LRMs have achieved significant breakthroughs in complex reasoning tasks through explicit chains of thought, their reliance on deep analytical thinking may limit their system 1 thinking capabilities. Moreover, a lack of benchmark currently exists to evaluate LRMs' performance in tasks that require such capabilities. To fill this gap, S1-Bench presents a set of simple, diverse, and naturally clear questions across multiple domains and languages, specifically designed to assess LRMs' performance in such tasks. Our comprehensive evaluation of 22 LRMs reveals significant lower efficiency tendencies, with outputs averaging 15.5 times longer than those of traditional small LLMs. Additionally, LRMs often identify correct answers early but continue unnecessary deliberation, with some models even producing numerous errors. These findings highlight the rigid reasoning patterns of current LRMs and underscore the substantial development needed to achieve balanced dual-system thinking capabilities that can adapt appropriately to task complexity.
Fast on the Easy, Deep on the Hard: Efficient Reasoning via Powered Length Penalty
Large language models (LLMs) have demonstrated significant advancements in reasoning capabilities, performing well on various challenging benchmarks. Techniques like Chain-of-Thought prompting have been introduced to further improve reasoning. However, these approaches frequently generate longer outputs, which in turn increase computational latency. Although some methods use reinforcement learning to shorten reasoning, they often apply uniform penalties without considering the problem's complexity, leading to suboptimal outcomes. In this study, we seek to enhance the efficiency of LLM reasoning by promoting conciseness for simpler problems while preserving sufficient reasoning for more complex ones for accuracy, thus improving the model's overall performance. Specifically, we manage the model's reasoning efficiency by dividing the reward function and including a novel penalty for output length. Our approach has yielded impressive outcomes in benchmark evaluations across three datasets: GSM8K, MATH500, and AIME2024. For the comparatively simpler datasets GSM8K and MATH500, our method has effectively shortened output lengths while preserving or enhancing accuracy. On the more demanding AIME2024 dataset, our approach has resulted in improved accuracy.
Cascading Biases: Investigating the Effect of Heuristic Annotation Strategies on Data and Models
Cognitive psychologists have documented that humans use cognitive heuristics, or mental shortcuts, to make quick decisions while expending less effort. While performing annotation work on crowdsourcing platforms, we hypothesize that such heuristic use among annotators cascades on to data quality and model robustness. In this work, we study cognitive heuristic use in the context of annotating multiple-choice reading comprehension datasets. We propose tracking annotator heuristic traces, where we tangibly measure low-effort annotation strategies that could indicate usage of various cognitive heuristics. We find evidence that annotators might be using multiple such heuristics, based on correlations with a battery of psychological tests. Importantly, heuristic use among annotators determines data quality along several dimensions: (1) known biased models, such as partial input models, more easily solve examples authored by annotators that rate highly on heuristic use, (2) models trained on annotators scoring highly on heuristic use don't generalize as well, and (3) heuristic-seeking annotators tend to create qualitatively less challenging examples. Our findings suggest that tracking heuristic usage among annotators can potentially help with collecting challenging datasets and diagnosing model biases.
The Relationship Between Reasoning and Performance in Large Language Models -- o3 (mini) Thinks Harder, Not Longer
Large language models have demonstrated remarkable progress in mathematical reasoning, leveraging chain-of-thought and test-time compute scaling. However, many open questions remain regarding the interplay between reasoning token usage and accuracy gains. In particular, when comparing models across generations, it is unclear whether improved performance results from longer reasoning chains or more efficient reasoning. We systematically analyze chain-of-thought length across o1-mini and o3-mini variants on the Omni-MATH benchmark, finding that o3-mini (m) achieves superior accuracy without requiring longer reasoning chains than o1-mini. Moreover, we show that accuracy generally declines as reasoning chains grow across all models and compute settings, even when controlling for difficulty of the questions. This accuracy drop is significantly smaller in more proficient models, suggesting that new generations of reasoning models use test-time compute more effectively. Finally, we highlight that while o3-mini (h) achieves a marginal accuracy gain over o3-mini (m), it does so by allocating substantially more reasoning tokens across all problems, even the ones that o3-mini (m) can already solve. These findings provide new insights into the relationship between model capability and reasoning length, with implications for efficiency, scaling, and evaluation methodologies.
Decoding the Enigma: Benchmarking Humans and AIs on the Many Facets of Working Memory
Working memory (WM), a fundamental cognitive process facilitating the temporary storage, integration, manipulation, and retrieval of information, plays a vital role in reasoning and decision-making tasks. Robust benchmark datasets that capture the multifaceted nature of WM are crucial for the effective development and evaluation of AI WM models. Here, we introduce a comprehensive Working Memory (WorM) benchmark dataset for this purpose. WorM comprises 10 tasks and a total of 1 million trials, assessing 4 functionalities, 3 domains, and 11 behavioral and neural characteristics of WM. We jointly trained and tested state-of-the-art recurrent neural networks and transformers on all these tasks. We also include human behavioral benchmarks as an upper bound for comparison. Our results suggest that AI models replicate some characteristics of WM in the brain, most notably primacy and recency effects, and neural clusters and correlates specialized for different domains and functionalities of WM. In the experiments, we also reveal some limitations in existing models to approximate human behavior. This dataset serves as a valuable resource for communities in cognitive psychology, neuroscience, and AI, offering a standardized framework to compare and enhance WM models, investigate WM's neural underpinnings, and develop WM models with human-like capabilities. Our source code and data are available at https://github.com/ZhangLab-DeepNeuroCogLab/WorM.
AdaptThink: Reasoning Models Can Learn When to Think
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.
Debate Helps Supervise Unreliable Experts
As AI systems are used to answer more difficult questions and potentially help create new knowledge, judging the truthfulness of their outputs becomes more difficult and more important. How can we supervise unreliable experts, which have access to the truth but may not accurately report it, to give answers that are systematically true and don't just superficially seem true, when the supervisor can't tell the difference between the two on their own? In this work, we show that debate between two unreliable experts can help a non-expert judge more reliably identify the truth. We collect a dataset of human-written debates on hard reading comprehension questions where the judge has not read the source passage, only ever seeing expert arguments and short quotes selectively revealed by 'expert' debaters who have access to the passage. In our debates, one expert argues for the correct answer, and the other for an incorrect answer. Comparing debate to a baseline we call consultancy, where a single expert argues for only one answer which is correct half of the time, we find that debate performs significantly better, with 84% judge accuracy compared to consultancy's 74%. Debates are also more efficient, being 68% of the length of consultancies. By comparing human to AI debaters, we find evidence that with more skilled (in this case, human) debaters, the performance of debate goes up but the performance of consultancy goes down. Our error analysis also supports this trend, with 46% of errors in human debate attributable to mistakes by the honest debater (which should go away with increased skill); whereas 52% of errors in human consultancy are due to debaters obfuscating the relevant evidence from the judge (which should become worse with increased skill). Overall, these results show that debate is a promising approach for supervising increasingly capable but potentially unreliable AI systems.
Test-Time Scaling in Reasoning Models Is Not Effective for Knowledge-Intensive Tasks Yet
Test-time scaling increases inference-time computation by allowing models to generate long reasoning chains, and has shown strong performance across many domains. However, in this work, we show that this approach is not yet effective for knowledge-intensive tasks, where high factual accuracy and low hallucination rates are essential. We conduct a comprehensive evaluation of test-time scaling using 12 reasoning models on two knowledge-intensive benchmarks. Our results reveal that increasing test-time computation does not consistently improve accuracy and, in many cases, it even leads to more hallucinations. We then analyze how extended reasoning affects hallucination behavior. We find that reduced hallucinations often result from the model choosing to abstain after thinking more, rather than from improved factual recall. Conversely, for some models, longer reasoning encourages attempts on previously unanswered questions, many of which result in hallucinations. Case studies show that extended reasoning can induce confirmation bias, leading to overconfident hallucinations. Despite these limitations, we observe that compared to non-thinking, enabling thinking remains beneficial. Code and data are available at https://github.com/XuZhao0/tts-knowledge
Evaluating Language Models for Efficient Code Generation
We introduce Differential Performance Evaluation (DPE), a framework designed to reliably evaluate Large Language Models (LLMs) for efficient code generation. Traditional coding benchmarks often fail to provide reliable insights into code efficiency, due to their reliance on simplistic test inputs and the absence of effective compound metrics. DPE addresses these issues by focusing on efficiency-demanding programming tasks and establishing an insightful compound metric for performance evaluation. DPE operates in two phases: To curate efficiency datasets, it selects efficiency-demanding tasks from existing coding benchmarks and generates computationally expensive inputs to stress the efficiency of LLM solutions. To assess the code efficiency, DPE profiles the new solution and compares it globally against a set of reference solutions that exhibit distinct efficiency levels, where the matched level defines its efficiency score. As a proof of concept, we use DPE to create EvalPerf, a benchmark with 121 performance-challenging coding tasks. Our comprehensive evaluation draws interesting findings on the efficiency impact of model sizes, instruction tuning, and prompting. For example, while the scaling law fails to account for code efficiency, general instruction tuning benefits both code correctness and efficiency. We also evaluate the evaluation by examining the effectiveness of DPE, showing that EvalPerf is reliable and convenient to use even across platforms.
Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition
Large Reasoning Models (LRMs) are criticized for the excessively lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking units; each unit attempts to produce a candidate answer to the original query. Hence, a natural idea to improve efficiency is to reduce the unit number. Yet, the fact that the thinking units in vanilla CoT cannot be explicitly managed renders doing so challenging. This paper introduces Multi-Turn Decomposition (MinD) to decode conventional CoT into a sequence of explicit, structured, and turn-wise interactions to bridge the gap. In MinD, the model provides a multi-turn response to the query, where each turn embraces a thinking unit and yields a corresponding answer. The subsequent turns can reflect, verify, revise, or explore alternative approaches to both the thinking and answer parts of earlier ones. This not only makes the answer delivered more swiftly, but also enables explicit controls over the iterative reasoning process (i.e., users may halt or continue at any turn). We follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats by prompting another LLM, and then tune the LRM with such data. Observing that the tuned model tends to consume even more tokens than the original one (probably due to that the multi-turn formats introduce additional answer tokens), we advocate leveraging RL algorithms like GRPO to prioritize correct outputs with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD can achieve up to ~70% reduction in both output token usage and time to first token (TTFT), while maintaining competitive performance on reasoning benchmarks such as MATH-500, AIME24, AMC23, and GPQA-Diamond.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models
IQ testing has served as a foundational methodology for evaluating human cognitive capabilities, deliberately decoupling assessment from linguistic background, language proficiency, or domain-specific knowledge to isolate core competencies in abstraction and reasoning. Yet, artificial intelligence research currently lacks systematic benchmarks to quantify these critical cognitive dimensions in multimodal systems. To address this critical gap, we propose MM-IQ, a comprehensive evaluation framework comprising 2,710 meticulously curated test items spanning 8 distinct reasoning paradigms. Through systematic evaluation of leading open-source and proprietary multimodal models, our benchmark reveals striking limitations: even state-of-the-art architectures achieve only marginally superior performance to random chance (27.49% vs. 25% baseline accuracy). This substantial performance chasm highlights the inadequacy of current multimodal systems in approximating fundamental human reasoning capacities, underscoring the need for paradigm-shifting advancements to bridge this cognitive divide.
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
Integration of cognitive tasks into artificial general intelligence test for large models
During the evolution of large models, performance evaluation is necessarily performed to assess their capabilities and ensure safety before practical application. However, current model evaluations mainly rely on specific tasks and datasets, lacking a united framework for assessing the multidimensional intelligence of large models. In this perspective, we advocate for a comprehensive framework of cognitive science-inspired artificial general intelligence (AGI) tests, aimed at fulfilling the testing needs of large models with enhanced capabilities. The cognitive science-inspired AGI tests encompass the full spectrum of intelligence facets, including crystallized intelligence, fluid intelligence, social intelligence, and embodied intelligence. To assess the multidimensional intelligence of large models, the AGI tests consist of a battery of well-designed cognitive tests adopted from human intelligence tests, and then naturally encapsulates into an immersive virtual community. We propose increasing the complexity of AGI testing tasks commensurate with advancements in large models and emphasizing the necessity for the interpretation of test results to avoid false negatives and false positives. We believe that cognitive science-inspired AGI tests will effectively guide the targeted improvement of large models in specific dimensions of intelligence and accelerate the integration of large models into human society.
Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks. Recent advancements in Large Reasoning Models (LRMs), such as OpenAI o1 and DeepSeek-R1, have further improved performance in System-2 reasoning domains like mathematics and programming by harnessing supervised fine-tuning (SFT) and reinforcement learning (RL) techniques to enhance the Chain-of-Thought (CoT) reasoning. However, while longer CoT reasoning sequences improve performance, they also introduce significant computational overhead due to verbose and redundant outputs, known as the "overthinking phenomenon". In this paper, we provide the first structured survey to systematically investigate and explore the current progress toward achieving efficient reasoning in LLMs. Overall, relying on the inherent mechanism of LLMs, we categorize existing works into several key directions: (1) model-based efficient reasoning, which considers optimizing full-length reasoning models into more concise reasoning models or directly training efficient reasoning models; (2) reasoning output-based efficient reasoning, which aims to dynamically reduce reasoning steps and length during inference; (3) input prompts-based efficient reasoning, which seeks to enhance reasoning efficiency based on input prompt properties such as difficulty or length control. Additionally, we introduce the use of efficient data for training reasoning models, explore the reasoning capabilities of small language models, and discuss evaluation methods and benchmarking.
Fast and Slow Planning
The concept of Artificial Intelligence has gained a lot of attention over the last decade. In particular, AI-based tools have been employed in several scenarios and are, by now, pervading our everyday life. Nonetheless, most of these systems lack many capabilities that we would naturally consider to be included in a notion of "intelligence". In this work, we present an architecture that, inspired by the cognitive theory known as Thinking Fast and Slow by D. Kahneman, is tasked with solving planning problems in different settings, specifically: classical and multi-agent epistemic. The system proposed is an instance of a more general AI paradigm, referred to as SOFAI (for Slow and Fast AI). SOFAI exploits multiple solving approaches, with different capabilities that characterize them as either fast or slow, and a metacognitive module to regulate them. This combination of components, which roughly reflects the human reasoning process according to D. Kahneman, allowed us to enhance the reasoning process that, in this case, is concerned with planning in two different settings. The behavior of this system is then compared to state-of-the-art solvers, showing that the newly introduced system presents better results in terms of generality, solving a wider set of problems with an acceptable trade-off between solving times and solution accuracy.
Core Knowledge Deficits in Multi-Modal Language Models
While Multimodal Large Language Models (MLLMs) demonstrate impressive abilities over high level perception and reasoning, their robustness in the wild still lags behind humans and exhibits diminished efficacy on simple tasks that are intuitive for humans. We examine the hypothesis that these deficiencies stem from the absence of core knowledge, rudimentary cognitive abilities innate to humans from early childhood. To probe core knowledge representation in MLLMs, we draw from developmental cognitive sciences and develop a large-scale benchmark, CoreCognition dataset, encompassing 12 core cognitive concepts. We evaluate 219 models with 10 different prompts, leading to a total of 2409 data points for analysis. Our findings reveal core knowledge deficits in early developed core abilities while models demonstrate human comparable performance in high level cognition. Moreover, we find that low level abilities show little to no scaling, in stark contrast to high level abilities. Finally, we introduce an evaluation technique, Concept Hacking, through which we demonstrate that MLLMs do not genuinely advance toward core knowledge but instead rely on illusory understanding and shortcut learning as they scale. Website with this https://growing-ai-like-a-child.github.io/{link}.
Training Language Models to Reason Efficiently
Scaling model size and training data has led to great advances in the performance of Large Language Models (LLMs). However, the diminishing returns of this approach necessitate alternative methods to improve model capabilities, particularly in tasks requiring advanced reasoning. Large reasoning models, which leverage long chain-of-thoughts, bring unprecedented breakthroughs in problem-solving capabilities but at a substantial deployment cost associated to longer generations. Reducing inference costs is crucial for the economic feasibility, user experience, and environmental sustainability of these models. In this work, we propose to train large reasoning models to reason efficiently. More precisely, we use reinforcement learning (RL) to train reasoning models to dynamically allocate inference-time compute based on task complexity. Our method incentivizes models to minimize unnecessary computational overhead while maintaining accuracy, thereby achieving substantial efficiency gains. It enables the derivation of a family of reasoning models with varying efficiency levels, controlled via a single hyperparameter. Experiments on two open-weight large reasoning models demonstrate significant reductions in inference cost while preserving most of the accuracy.
The Impact of Reasoning Step Length on Large Language Models
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs' reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs' potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, ``PhD-level'' knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models, however correct solutions are easy to verify, and models' mistakes are easy to spot. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models that are on par on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with ``I give up'' before providing an answer that it knows is wrong. R1 can also be remarkably ``uncertain'' in its output and in rare cases, it does not ``finish thinking,'' which suggests the need for an inference-time technique to ``wrap up'' before the context window limit is reached. We also quantify the effectiveness of reasoning longer with R1 and Gemini Thinking to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
Reasoning Models Can Be Effective Without Thinking
Recent LLMs have significantly improved reasoning capabilities, primarily by including an explicit, lengthy Thinking process as part of generation. In this paper, we question whether this explicit thinking is necessary. Using the state-of-the-art DeepSeek-R1-Distill-Qwen, we find that bypassing the thinking process via simple prompting, denoted as NoThinking, can be surprisingly effective. When controlling for the number of tokens, NoThinking outperforms Thinking across a diverse set of seven challenging reasoning datasets--including mathematical problem solving, formal theorem proving, and coding--especially in low-budget settings, e.g., 51.3 vs. 28.9 on ACM 23 with 700 tokens. Notably, the performance of NoThinking becomes more competitive with pass@k as k increases. Building on this observation, we demonstrate that a parallel scaling approach that uses NoThinking to generate N outputs independently and aggregates them is highly effective. For aggregation, we use task-specific verifiers when available, or we apply simple best-of-N strategies such as confidence-based selection. Our method outperforms a range of baselines with similar latency using Thinking, and is comparable to Thinking with significantly longer latency (up to 9x). Together, our research encourages a reconsideration of the necessity of lengthy thinking processes, while also establishing a competitive reference for achieving strong reasoning performance in low-budget settings or at low latency using parallel scaling.
Emergent Analogical Reasoning in Large Language Models
The recent advent of large language models has reinvigorated debate over whether human cognitive capacities might emerge in such generic models given sufficient training data. Of particular interest is the ability of these models to reason about novel problems zero-shot, without any direct training. In human cognition, this capacity is closely tied to an ability to reason by analogy. Here, we performed a direct comparison between human reasoners and a large language model (the text-davinci-003 variant of GPT-3) on a range of analogical tasks, including a non-visual matrix reasoning task based on the rule structure of Raven's Standard Progressive Matrices. We found that GPT-3 displayed a surprisingly strong capacity for abstract pattern induction, matching or even surpassing human capabilities in most settings; preliminary tests of GPT-4 indicated even better performance. Our results indicate that large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems.
ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding task involving continuous decision-making, heavy use of working memory, and frequent switching between multiple activities. Scholarly writing is particularly complex as it requires authors to coordinate many pieces of multiform knowledge. To fully understand writers' cognitive thought process, one should fully decode the end-to-end writing data (from individual ideas to final manuscript) and understand their complex cognitive mechanisms in scholarly writing. We introduce ScholaWrite dataset, the first-of-its-kind keystroke logs of an end-to-end scholarly writing process for complete manuscripts, with thorough annotations of cognitive writing intentions behind each keystroke. Our dataset includes LaTeX-based keystroke data from five preprints with nearly 62K total text changes and annotations across 4 months of paper writing. ScholaWrite shows promising usability and applications (e.g., iterative self-writing) for the future development of AI writing assistants for academic research, which necessitate complex methods beyond LLM prompting. Our experiments clearly demonstrated the importance of collection of end-to-end writing data, rather than the final manuscript, for the development of future writing assistants to support the cognitive thinking process of scientists. Our de-identified dataset, demo, and code repository are available on our project page.
Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation
The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.
Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Thinking Makes Humans Worse
Chain-of-thought (CoT) prompting has become a widely used strategy for working with large language and multimodal models. While CoT has been shown to improve performance across many tasks, determining the settings in which it is effective remains an ongoing effort. In particular, it is still an open question in what settings CoT systematically reduces model performance. In this paper, we seek to identify the characteristics of tasks where CoT reduces performance by drawing inspiration from cognitive psychology, looking at cases where (i) verbal thinking or deliberation hurts performance in humans, and (ii) the constraints governing human performance generalize to language models. Three such cases are implicit statistical learning, visual recognition, and classifying with patterns containing exceptions. In extensive experiments across all three settings, we find that a diverse collection of state-of-the-art models exhibit significant drop-offs in performance (e.g., up to 36.3% absolute accuracy for OpenAI o1-preview compared to GPT-4o) when using inference-time reasoning compared to zero-shot counterparts. We also identify three tasks that satisfy condition (i) but not (ii), and find that while verbal thinking reduces human performance in these tasks, CoT retains or increases model performance. Overall, our results show that while there is not an exact parallel between the cognitive processes of models and those of humans, considering cases where thinking has negative consequences for human performance can help us identify settings where it negatively impacts models. By connecting the literature on human deliberation with evaluations of CoT, we offer a new tool that can be used in understanding the impact of prompt choices and inference-time reasoning.
Reasoning on a Spectrum: Aligning LLMs to System 1 and System 2 Thinking
Large Language Models (LLMs) exhibit impressive reasoning abilities, yet their reliance on structured step-by-step processing reveals a critical limitation. While human cognition fluidly adapts between intuitive, heuristic (System 1) and analytical, deliberative (System 2) reasoning depending on the context, LLMs lack this dynamic flexibility. This rigidity can lead to brittle and unreliable performance when faced with tasks that deviate from their trained patterns. To address this, we create a dataset of 2,000 samples with valid System 1 and System 2 answers, explicitly align LLMs with these reasoning styles, and evaluate their performance across reasoning benchmarks. Our results reveal an accuracy-efficiency trade-off: System 2-aligned models excel in arithmetic and symbolic reasoning, while System 1-aligned models perform better in commonsense tasks. A mechanistic analysis of model responses shows that System 1 models employ more definitive answers, whereas System 2 models demonstrate greater uncertainty. Interpolating between these extremes produces a monotonic transition in reasoning accuracy, preserving coherence. This work challenges the assumption that step-by-step reasoning is always optimal and highlights the need for adapting reasoning strategies based on task demands.
Beyond Attention: Toward Machines with Intrinsic Higher Mental States
Attending to what is relevant is fundamental to both the mammalian brain and modern machine learning models such as Transformers. Yet, determining relevance remains a core challenge, traditionally offloaded to learning algorithms like backpropagation. Inspired by recent cellular neurobiological evidence linking neocortical pyramidal cells to distinct mental states, this work shows how models (e.g., Transformers) can emulate high-level perceptual processing and awake thought (imagination) states to pre-select relevant information before applying attention. Triadic neuronal-level modulation loops among questions (Q), clues (keys, K), and hypotheses (values, V) enable diverse, deep, parallel reasoning chains at the representation level and allow a rapid shift from initial biases to refined understanding. This leads to orders-of-magnitude faster learning with significantly reduced computational demand (e.g., fewer heads, layers, and tokens), at an approximate cost of O(N), where N is the number of input tokens. Results span reinforcement learning (e.g., CarRacing in a high-dimensional visual setup), computer vision, and natural language question answering.
Rational Metareasoning for Large Language Models
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs), deploying additional inference-time compute to improve task performance. However, as LLMs increase in both size and adoption, inference costs are correspondingly becoming increasingly burdensome. How, then, might we optimize reasoning's cost-performance tradeoff? This work introduces a novel approach based on computational models of metareasoning used in cognitive science, training LLMs to selectively use intermediate reasoning steps only when necessary. We first develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning, then use this reward function with Expert Iteration to train the LLM. Compared to few-shot chain-of-thought prompting and STaR, our method significantly reduces inference costs (20-37\% fewer tokens generated across three models) while maintaining task performance across diverse datasets.
Rethinking the Evaluating Framework for Natural Language Understanding in AI Systems: Language Acquisition as a Core for Future Metrics
In the burgeoning field of artificial intelligence (AI), the unprecedented progress of large language models (LLMs) in natural language processing (NLP) offers an opportunity to revisit the entire approach of traditional metrics of machine intelligence, both in form and content. As the realm of machine cognitive evaluation has already reached Imitation, the next step is an efficient Language Acquisition and Understanding. Our paper proposes a paradigm shift from the established Turing Test towards an all-embracing framework that hinges on language acquisition, taking inspiration from the recent advancements in LLMs. The present contribution is deeply tributary of the excellent work from various disciplines, point out the need to keep interdisciplinary bridges open, and delineates a more robust and sustainable approach.
LLMs as Method Actors: A Model for Prompt Engineering and Architecture
We introduce "Method Actors" as a mental model for guiding LLM prompt engineering and prompt architecture. Under this mental model, LLMs should be thought of as actors; prompts as scripts and cues; and LLM responses as performances. We apply this mental model to the task of improving LLM performance at playing Connections, a New York Times word puzzle game that prior research identified as a challenging benchmark for evaluating LLM reasoning. Our experiments with GPT-4o show that a "Method Actors" approach can significantly improve LLM performance over both a vanilla and "Chain of Thoughts" approach. A vanilla approach solves 27% of Connections puzzles in our dataset and a "Chain of Thoughts" approach solves 41% of puzzles, whereas our strongest "Method Actor" approach solves 86% of puzzles. We also test OpenAI's newest model designed specifically for complex reasoning tasks, o1-preview. When asked to solve a puzzle all at once, o1-preview solves 79% of Connections puzzles in our dataset, and when allowed to build puzzle solutions one guess at a time over multiple API calls, o1-preview solves 100% of the puzzles. Incorporating a "Method Actor" prompt architecture increases the percentage of puzzles that o1-preview solves perfectly from 76% to 87%.
Confidence-Weighted Token Set Cover for Early Hypothesis Pruning in Self-Consistency
Despite its simplicity and efficacy, the high token expenditure of self-consistency can limit its practical utility. Here we investigate if self-consistency can be made more token-efficient for long chain-of-thought reasoning tasks, while preserving its parallelism, through early hypothesis pruning. Concretely, we generate all solutions in parallel, but periodically prune intermediate hypotheses that are deemed unnecessary based on two lightweight indicators: (a) the model's own confidence in individual hypotheses, and (b) lexical coverage of all current hypotheses by candidate subsets that are under consideration for continued retention. We design a fast weighted set cover algorithm that utilizes the two indicators; our evaluation of five LLMs on three math benchmarks shows that this method can improve token efficiency for all models, by 10-35% in many cases.
Speculative Reward Model Boosts Decision Making Ability of LLMs Cost-Effectively
Effective decision-making in Large Language Models (LLMs) is essential for handling intricate tasks. However, existing approaches prioritize performance but often overlook the balance between effectiveness and computational cost. To address this, we first introduce the 3E Criteria to systematically assess the cost-effectiveness of search strategies, revealing that existing methods often trade significant efficiency for marginal performance gains. To improve LLM decision-making while maintaining efficiency, we propose the Speculative Reward Model (SRM), a plug-and-play framework that seamlessly integrates with existing search strategies. Specifically, SRM employs an external reward assigner to predict optimal actions, reducing reliance on LLMs' internal self-evaluation. And a speculative verification mechanism is used to prune suboptimal choices and guide the search toward more promising steps. We evaluate SRM on several complex decision-making tasks including mathematical reasoning, planning and numerical reasoning in specialized domains. Experimental results show that SRM reduces costs to 1/10 of the original search framework on average while maintaining effectiveness.
Reverse Thinking Makes LLMs Stronger Reasoners
Reverse thinking plays a crucial role in human reasoning. Humans can reason not only from a problem to a solution but also in reverse, i.e., start from the solution and reason towards the problem. This often enhances overall reasoning performance as it enables consistency checks between their forward and backward thinking. To enable Large Language Models (LLMs) to perform reverse thinking, we introduce Reverse-Enhanced Thinking (RevThink), a framework composed of data augmentation and learning objectives. In RevThink, we augment the dataset by collecting structured forward-backward reasoning from a teacher model, consisting of: (1) the original question, (2) forward reasoning, (3) backward question, and (4) backward reasoning. We then employ three objectives to train a smaller student model in a multi-task learning fashion: (a) generate forward reasoning from a question, (b) generate a backward question from a question, and (c) generate backward reasoning from the backward question. Experiments across 12 datasets covering commonsense, math, and logical reasoning show an average 13.53% improvement over the student model's zero-shot performance and a 6.84% improvement over the strongest knowledge distillation baselines. Moreover, our method demonstrates sample efficiency -- using only 10% of the correct forward reasoning from the training data, it outperforms a standard fine-tuning method trained on 10x more forward reasoning. RevThink also exhibits strong generalization to out-of-distribution held-out datasets.
ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
Thinking Fast and Slow in Large Language Models
Large language models (LLMs) are currently at the forefront of intertwining AI systems with human communication and everyday life. Therefore, it is of great importance to evaluate their emerging abilities. In this study, we show that LLMs like GPT-3 exhibit behavior that strikingly resembles human-like intuition - and the cognitive errors that come with it. However, LLMs with higher cognitive capabilities, in particular ChatGPT and GPT-4, learned to avoid succumbing to these errors and perform in a hyperrational manner. For our experiments, we probe LLMs with the Cognitive Reflection Test (CRT) as well as semantic illusions that were originally designed to investigate intuitive decision-making in humans. Our study demonstrates that investigating LLMs with methods from psychology has the potential to reveal otherwise unknown emergent traits.
PENCIL: Long Thoughts with Short Memory
While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up during test-time is challenging due to inefficient memory usage -- intermediate computations accumulate indefinitely in context even no longer needed for future thoughts. We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process, allowing the model to recursively clean up intermediate thoughts based on patterns learned from training. With this reduction mechanism, PENCIL significantly reduces the maximal context length required during generation, and thus can generate longer thoughts with limited memory, solving larger-scale problems given more thinking time. For example, we demonstrate PENCIL achieves 97\% accuracy on the challenging Einstein's puzzle -- a task even large models like GPT-4 struggle with -- using only a small 25M-parameter transformer with 2048 context length. Theoretically, we prove PENCIL can perform universal space-efficient computation by simulating Turing machines with optimal time and space complexity, and thus can solve arbitrary computational tasks that would otherwise be intractable given context window constraints.
Dissociating language and thought in large language models: a cognitive perspective
Today's large language models (LLMs) routinely generate coherent, grammatical and seemingly meaningful paragraphs of text. This achievement has led to speculation that these networks are -- or will soon become -- "thinking machines", capable of performing tasks that require abstract knowledge and reasoning. Here, we review the capabilities of LLMs by considering their performance on two different aspects of language use: 'formal linguistic competence', which includes knowledge of rules and patterns of a given language, and 'functional linguistic competence', a host of cognitive abilities required for language understanding and use in the real world. Drawing on evidence from cognitive neuroscience, we show that formal competence in humans relies on specialized language processing mechanisms, whereas functional competence recruits multiple extralinguistic capacities that comprise human thought, such as formal reasoning, world knowledge, situation modeling, and social cognition. In line with this distinction, LLMs show impressive (although imperfect) performance on tasks requiring formal linguistic competence, but fail on many tests requiring functional competence. Based on this evidence, we argue that (1) contemporary LLMs should be taken seriously as models of formal linguistic skills; (2) models that master real-life language use would need to incorporate or develop not only a core language module, but also multiple non-language-specific cognitive capacities required for modeling thought. Overall, a distinction between formal and functional linguistic competence helps clarify the discourse surrounding LLMs' potential and provides a path toward building models that understand and use language in human-like ways.
Igniting Language Intelligence: The Hitchhiker's Guide From Chain-of-Thought Reasoning to Language Agents
Large language models (LLMs) have dramatically enhanced the field of language intelligence, as demonstrably evidenced by their formidable empirical performance across a spectrum of complex reasoning tasks. Additionally, theoretical proofs have illuminated their emergent reasoning capabilities, providing a compelling showcase of their advanced cognitive abilities in linguistic contexts. Critical to their remarkable efficacy in handling complex reasoning tasks, LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer. The CoT reasoning approach has not only exhibited proficiency in amplifying reasoning performance but also in enhancing interpretability, controllability, and flexibility. In light of these merits, recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents, which adeptly adhere to language instructions and execute actions within varied environments. This survey paper orchestrates a thorough discourse, penetrating vital research dimensions, encompassing: (i) the foundational mechanics of CoT techniques, with a focus on elucidating the circumstances and justification behind its efficacy; (ii) the paradigm shift in CoT; and (iii) the burgeoning of language agents fortified by CoT approaches. Prospective research avenues envelop explorations into generalization, efficiency, customization, scaling, and safety. This paper caters to a wide audience, including beginners seeking comprehensive knowledge of CoT reasoning and language agents, as well as experienced researchers interested in foundational mechanics and engaging in cutting-edge discussions on these topics. A repository for the related papers is available at https://github.com/Zoeyyao27/CoT-Igniting-Agent.
Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks by scaling test-time compute and exhibiting human-like deep thinking. However, we identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts without sufficiently exploring promising paths to reach a correct solution. This behavior leads to inadequate depth of reasoning and decreased performance, particularly on challenging mathematical problems. To systematically analyze this issue, we conduct experiments on three challenging test sets and two representative open-source o1-like models, revealing that frequent thought switching correlates with incorrect responses. We introduce a novel metric to quantify underthinking by measuring token efficiency in incorrect answers. To address underthinking, we propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts, encouraging deeper exploration of each reasoning path. Experimental results demonstrate that our approach improves accuracy across challenging datasets without requiring model fine-tuning. Our findings contribute to understanding reasoning inefficiencies in o1-like LLMs and offer a practical solution to enhance their problem-solving capabilities.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
Dissecting Tool-Integrated Reasoning: An Empirical Study and Analysis
Large Language Models (LLMs) have made significant strides in reasoning tasks through methods like chain-of-thought (CoT) reasoning. However, they often fall short in tasks requiring precise computations. Tool-Integrated Reasoning (TIR) has emerged as a solution by incorporating external tools into the reasoning process. Nevertheless, the generalization of TIR in improving the reasoning ability of LLM is still unclear. Additionally, whether TIR has improved the model's reasoning behavior and helped the model think remains to be studied. We introduce ReasonZoo, a comprehensive benchmark encompassing nine diverse reasoning categories, to evaluate the effectiveness of TIR across various domains. Additionally, we propose two novel metrics, Performance-Aware Cost (PAC) and Area Under the Performance-Cost Curve (AUC-PCC), to assess reasoning efficiency. Our empirical evaluation demonstrates that TIR-enabled models consistently outperform their non-TIR counterparts in both mathematical and non-mathematical tasks. Furthermore, TIR enhances reasoning efficiency, as evidenced by improved PAC and AUC-PCC, indicating reduced overthinking and more streamlined reasoning. These findings underscore the domain-general benefits of TIR and its potential to advance LLM capabilities in complex reasoning tasks.
The Illusion of Diminishing Returns: Measuring Long Horizon Execution in LLMs
Does continued scaling of large language models (LLMs) yield diminishing returns? Real-world value often stems from the length of task an agent can complete. We start this work by observing the simple but counterintuitive fact that marginal gains in single-step accuracy can compound into exponential improvements in the length of a task a model can successfully complete. Then, we argue that failures of LLMs when simple tasks are made longer arise from mistakes in execution, rather than an inability to reason. We propose isolating execution capability, by explicitly providing the knowledge and plan needed to solve a long-horizon task. We find that larger models can correctly execute significantly more turns even when small models have 100\% single-turn accuracy. We observe that the per-step accuracy of models degrades as the number of steps increases. This is not just due to long-context limitations -- curiously, we observe a self-conditioning effect -- models become more likely to make mistakes when the context contains their errors from prior turns. Self-conditioning does not reduce by just scaling the model size. In contrast, recent thinking models do not self-condition, and can also execute much longer tasks in a single turn. We conclude by benchmarking frontier thinking models on the length of task they can execute in a single turn. Overall, by focusing on the ability to execute, we hope to reconcile debates on how LLMs can solve complex reasoning problems yet fail at simple tasks when made longer, and highlight the massive benefits of scaling model size and sequential test-time compute for long-horizon tasks.
Evaluating Cognitive Maps and Planning in Large Language Models with CogEval
Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.
Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token (<think> and </think>) can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
Thinking LLMs: General Instruction Following with Thought Generation
LLMs are typically trained to answer user questions or follow instructions similarly to how human experts respond. However, in the standard alignment framework they lack the basic ability of explicit thinking before answering. Thinking is important for complex questions that require reasoning and planning -- but can be applied to any task. We propose a training method for equipping existing LLMs with such thinking abilities for general instruction following without use of additional human data. We achieve this by an iterative search and optimization procedure that explores the space of possible thought generations, allowing the model to learn how to think without direct supervision. For each instruction, the thought candidates are scored using a judge model to evaluate their responses only, and then optimized via preference optimization. We show that this procedure leads to superior performance on AlpacaEval and Arena-Hard, and shows gains from thinking on non-reasoning categories such as marketing, health and general knowledge, in addition to more traditional reasoning & problem-solving tasks.
Thinking Isn't an Illusion: Overcoming the Limitations of Reasoning Models via Tool Augmentations
Large Reasoning Models (LRMs) have become a central focus in today's large language model (LLM) research, where models are designed to output a step-by-step thinking process before arriving at a final answer to handle complex reasoning tasks. Despite their promise, recent empirical studies (e.g., [Shojaee et al., 2025] from Apple) suggest that this thinking process may not actually enhance reasoning ability, where LLMs without explicit reasoning actually outperform LRMs on tasks with low or high complexity. In this work, we revisit these findings and investigate whether the limitations of LRMs persist when tool augmentations are introduced. We incorporate two types of tools, Python interpreters and scratchpads, and evaluate three representative LLMs and their LRM counterparts on Apple's benchmark reasoning puzzles. Our results show that, with proper tool use, LRMs consistently outperform their non-reasoning counterparts across all levels of task complexity. These findings challenge the recent narrative that reasoning is an illusion and highlight the potential of tool-augmented LRMs for solving complex problems.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
Entity-Based Knowledge Conflicts in Question Answering
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge conflicts, where the contextual information contradicts the learned information. Analyzing the behaviour of popular models, we measure their over-reliance on memorized information (the cause of hallucinations), and uncover important factors that exacerbate this behaviour. Lastly, we propose a simple method to mitigate over-reliance on parametric knowledge, which minimizes hallucination, and improves out-of-distribution generalization by 4%-7%. Our findings demonstrate the importance for practitioners to evaluate model tendency to hallucinate rather than read, and show that our mitigation strategy encourages generalization to evolving information (i.e., time-dependent queries). To encourage these practices, we have released our framework for generating knowledge conflicts.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
Large Language Models Can Be Easily Distracted by Irrelevant Context
Large language models have achieved impressive performance on various natural language processing tasks. However, so far they have been evaluated primarily on benchmarks where all information in the input context is relevant for solving the task. In this work, we investigate the distractibility of large language models, i.e., how the model problem-solving accuracy can be influenced by irrelevant context. In particular, we introduce Grade-School Math with Irrelevant Context (GSM-IC), an arithmetic reasoning dataset with irrelevant information in the problem description. We use this benchmark to measure the distractibility of cutting-edge prompting techniques for large language models, and find that the model performance is dramatically decreased when irrelevant information is included. We also identify several approaches for mitigating this deficiency, such as decoding with self-consistency and adding to the prompt an instruction that tells the language model to ignore the irrelevant information.
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
Memory, Consciousness and Large Language Model
With the development in cognitive science and Large Language Models (LLMs), increasing connections have come to light between these two distinct fields. Building upon these connections, we propose a conjecture suggesting the existence of a duality between LLMs and Tulving's theory of memory. We identify a potential correspondence between Tulving's synergistic ecphory model (SEM) of retrieval and the emergent abilities observed in LLMs, serving as supporting evidence for our conjecture. Furthermore, we speculate that consciousness may be considered a form of emergent ability based on this duality. We also discuss how other theories of consciousness intersect with our research.
Is your LLM trapped in a Mental Set? Investigative study on how mental sets affect the reasoning capabilities of LLMs
In this paper, we present an investigative study on how Mental Sets influence the reasoning capabilities of LLMs. LLMs have excelled in diverse natural language processing (NLP) tasks, driven by advancements in parameter-efficient fine-tuning (PEFT) and emergent capabilities like in-context learning (ICL). For complex reasoning tasks, selecting the right model for PEFT or ICL is critical, often relying on scores on benchmarks such as MMLU, MATH, and GSM8K. However, current evaluation methods, based on metrics like F1 Score or reasoning chain assessments by larger models, overlook a key dimension: adaptability to unfamiliar situations and overcoming entrenched thinking patterns. In cognitive psychology, Mental Set refers to the tendency to persist with previously successful strategies, even when they become inefficient - a challenge for problem solving and reasoning. We compare the performance of LLM models like Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct and GPT-4o in the presence of mental sets. To the best of our knowledge, this is the first study to integrate cognitive psychology concepts into the evaluation of LLMs for complex reasoning tasks, providing deeper insights into their adaptability and problem-solving efficacy.
Measuring Reasoning Utility in LLMs via Conditional Entropy Reduction
Recent advancements in large language models (LLMs) often rely on generating intermediate reasoning steps to enhance accuracy. However, little work has examined how reasoning utility contributes to the final answer's correctness. Due to the stochastic nature of autoregressive generation, generating more context does not guarantee increased confidence in the answer. If we could predict, during generation, whether a reasoning step will be useful, we could stop early or prune ineffective steps, avoiding distractions in the final decision. We present an oracle study on MATH dataset, using Qwen2.5-32B and GPT-4o to generate reasoning chains, and then employing a separate model (Qwen3-8B) to quantify the utility of these chains for final accuracy. Specifically, we measure the model's uncertainty on the answer span Y at each reasoning step using conditional entropy (expected negative log-likelihood over the vocabulary) with context expanding step by step. Our results show a clear pattern: conditional entropy that decreases over steps is strongly associated with correct answers, whereas flat or increasing entropy often results in wrong answers. We also corroborate that incorrect reasoning paths tend to be longer than correct ones, suggesting that longer reasoning does not necessarily yield better outcomes. These findings serve as a foundation to inspire future work on designing efficient reasoning pipelines that detect and avoid unproductive reasoning early.
Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
Enhancing LLM Intelligence with ARM-RAG: Auxiliary Rationale Memory for Retrieval Augmented Generation
Large Language Models (LLMs) are smart but forgetful. Recent studies, (e.g., (Bubeck et al., 2023)) on modern LLMs have shown that they are capable of performing amazing tasks typically necessitating human-level intelligence. However, unlike humans, frozen LLMs do not improve over time; they neither acquire new knowledge nor learn from their successes or failures. Some approaches to improving the intelligence of LLMs include fine-tuning models based on problem-solving performance (Zelikman et al., 2022), and building bigger and more sophisticated models (Bubeck et al., 2023). However, these methods have the drawback of requiring substantial data and computational resources to retrain existing models. In this paper, we explore the use of Retrieval Augmented Generation, also known as RAG (Lewis et al., 2021) to improve problem-solving performance. We propose ARM-RAG (Auxiliary Rationale Memory for Retrieval Augmented Generation), a system that learns from its successes without incurring high training costs. We demonstrate that the storage and subsequent retrieval of reasoning chains have a positive influence on performance in grade-school math problems.
AdaR1: From Long-CoT to Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization
Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
The Generative AI Paradox: "What It Can Create, It May Not Understand"
The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.
Compression Represents Intelligence Linearly
There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. Despite such appealing discussions, little empirical evidence is present for the interplay between compression and intelligence. In this work, we examine their relationship in the context of LLMs, treating LLMs as data compressors. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores as a surrogate, specifically targeting intelligence related to knowledge and commonsense, coding, and mathematical reasoning. Across 12 benchmarks, our study brings together 30 public LLMs that originate from diverse organizations. Remarkably, we find that LLMs' intelligence -- reflected by average benchmark scores -- almost linearly correlates with their ability to compress external text corpora. These results provide concrete evidence supporting the belief that superior compression indicates greater intelligence. Furthermore, our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models
Evaluating the general abilities of foundation models to tackle human-level tasks is a vital aspect of their development and application in the pursuit of Artificial General Intelligence (AGI). Traditional benchmarks, which rely on artificial datasets, may not accurately represent human-level capabilities. In this paper, we introduce AGIEval, a novel benchmark specifically designed to assess foundation model in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003, using this benchmark. Impressively, GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam. This demonstrates the extraordinary performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks that require complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal these models' strengths and limitations, providing valuable insights into future directions for enhancing their general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a more meaningful and robust evaluation of foundation models' performance in real-world scenarios. The data, code, and all model outputs are released in https://github.com/microsoft/AGIEval.
Self-Regulation and Requesting Interventions
Human intelligence involves metacognitive abilities like self-regulation, recognizing limitations, and seeking assistance only when needed. While LLM Agents excel in many domains, they often lack this awareness. Overconfident agents risk catastrophic failures, while those that seek help excessively hinder efficiency. A key challenge is enabling agents with a limited intervention budget C is to decide when to request assistance. In this paper, we propose an offline framework that trains a "helper" policy to request interventions, such as more powerful models or test-time compute, by combining LLM-based process reward models (PRMs) with tabular reinforcement learning. Using state transitions collected offline, we score optimal intervention timing with PRMs and train the helper model on these labeled trajectories. This offline approach significantly reduces costly intervention calls during training. Furthermore, the integration of PRMs with tabular RL enhances robustness to off-policy data while avoiding the inefficiencies of deep RL. We empirically find that our method delivers optimal helper behavior.
Defining and Evaluating Visual Language Models' Basic Spatial Abilities: A Perspective from Psychometrics
The Theory of Multiple Intelligences underscores the hierarchical nature of cognitive capabilities. To advance Spatial Artificial Intelligence, we pioneer a psychometric framework defining five Basic Spatial Abilities (BSAs) in Visual Language Models (VLMs): Spatial Perception, Spatial Relation, Spatial Orientation, Mental Rotation, and Spatial Visualization. Benchmarking 13 mainstream VLMs through nine validated psychometric experiments reveals significant gaps versus humans (average score 24.95 vs. 68.38), with three key findings: 1) VLMs mirror human hierarchies (strongest in 2D orientation, weakest in 3D rotation) with independent BSAs (Pearson's r<0.4); 2) Smaller models such as Qwen2-VL-7B surpass larger counterparts, with Qwen leading (30.82) and InternVL2 lagging (19.6); 3) Interventions like chain-of-thought (0.100 accuracy gain) and 5-shot training (0.259 improvement) show limits from architectural constraints. Identified barriers include weak geometry encoding and missing dynamic simulation. By linking psychometric BSAs to VLM capabilities, we provide a diagnostic toolkit for spatial intelligence evaluation, methodological foundations for embodied AI development, and a cognitive science-informed roadmap for achieving human-like spatial intelligence.
Efficient Long-Decoding Inference with Reasoning-Aware Attention Sparsity
Large Language Models (LLMs) have demonstrated strong capabilities across various domains, with recent advancements in challenging reasoning tasks such as mathematics and programming. However, solving reasoning tasks often requires long decoding chains (of thoughts), which incur O(N) time and memory consumption, where N is the chain length. To mitigate O(N) time and memory consumption, existing sparsity-based algorithms propose retaining only the most critical token's intermediate data (i.e., key-value cache) and discarding the rest. However, these existing algorithms struggle with the ``impossible trinity'' of accuracy, time, and memory. For example, the state-of-the-art algorithm, Quest, achieves high accuracy with O(L) time but O(N) memory (L is the cache budget, L ll N). To address this issue, in this paper, we identify a new attention pattern during the decode stage of reasoning tasks, where milestone tokens (analogous to lemmas in mathematical proofs) emerge, are utilized, and then become unimportant afterward. Based on this pattern, we propose a new algorithm named RaaS that identifies and retains milestone tokens only until they are no longer needed, achieving high accuracy with O(L) time and O(L) memory complexity.
Principled Personas: Defining and Measuring the Intended Effects of Persona Prompting on Task Performance
Expert persona prompting -- assigning roles such as expert in math to language models -- is widely used for task improvement. However, prior work shows mixed results on its effectiveness, and does not consider when and why personas should improve performance. We analyze the literature on persona prompting for task improvement and distill three desiderata: 1) performance advantage of expert personas, 2) robustness to irrelevant persona attributes, and 3) fidelity to persona attributes. We then evaluate 9 state-of-the-art LLMs across 27 tasks with respect to these desiderata. We find that expert personas usually lead to positive or non-significant performance changes. Surprisingly, models are highly sensitive to irrelevant persona details, with performance drops of almost 30 percentage points. In terms of fidelity, we find that while higher education, specialization, and domain-relatedness can boost performance, their effects are often inconsistent or negligible across tasks. We propose mitigation strategies to improve robustness -- but find they only work for the largest, most capable models. Our findings underscore the need for more careful persona design and for evaluation schemes that reflect the intended effects of persona usage.
AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies
Humans regularly engage in analogical thinking, relating personal experiences to current situations (X is analogous to Y because of Z). Analogical thinking allows humans to solve problems in creative ways, grasp difficult concepts, and articulate ideas more effectively. Can language models (LMs) do the same? To answer this question, we propose ANALOBENCH, a benchmark to determine analogical reasoning ability in LMs. Our benchmarking approach focuses on aspects of this ability that are common among humans: (i) recalling related experiences from a large amount of information, and (ii) applying analogical reasoning to complex and lengthy scenarios. We test a broad collection of proprietary models (e.g., GPT family, Claude V2) and open source models such as LLaMA2. As in prior results, scaling up LMs results in some performance boosts. Surprisingly, scale offers minimal gains when, (i) analogies involve lengthy scenarios, or (ii) recalling relevant scenarios from a large pool of information, a process analogous to finding a needle in a haystack. We hope these observations encourage further research in this field.
Are Emergent Abilities of Large Language Models a Mirage?
Recent work claims that large language models display emergent abilities, abilities not present in smaller-scale models that are present in larger-scale models. What makes emergent abilities intriguing is two-fold: their sharpness, transitioning seemingly instantaneously from not present to present, and their unpredictability, appearing at seemingly unforeseeable model scales. Here, we present an alternative explanation for emergent abilities: that for a particular task and model family, when analyzing fixed model outputs, emergent abilities appear due to the researcher's choice of metric rather than due to fundamental changes in model behavior with scale. Specifically, nonlinear or discontinuous metrics produce apparent emergent abilities, whereas linear or continuous metrics produce smooth, continuous predictable changes in model performance. We present our alternative explanation in a simple mathematical model, then test it in three complementary ways: we (1) make, test and confirm three predictions on the effect of metric choice using the InstructGPT/GPT-3 family on tasks with claimed emergent abilities; (2) make, test and confirm two predictions about metric choices in a meta-analysis of emergent abilities on BIG-Bench; and (3) show to choose metrics to produce never-before-seen seemingly emergent abilities in multiple vision tasks across diverse deep networks. Via all three analyses, we provide evidence that alleged emergent abilities evaporate with different metrics or with better statistics, and may not be a fundamental property of scaling AI models.
Large Language Models for Mathematical Reasoning: Progresses and Challenges
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
Embodied Agents Meet Personalization: Exploring Memory Utilization for Personalized Assistance
Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO
Self-attention Does Not Need O(n^2) Memory
We present a very simple algorithm for attention that requires O(1) memory with respect to sequence length and an extension to self-attention that requires O(log n) memory. This is in contrast with the frequently stated belief that self-attention requires O(n^2) memory. While the time complexity is still O(n^2), device memory rather than compute capability is often the limiting factor on modern accelerators. Thus, reducing the memory requirements of attention allows processing of longer sequences than might otherwise be feasible. We provide a practical implementation for accelerators that requires O(n) memory, is numerically stable, and is within a few percent of the runtime of the standard implementation of attention. We also demonstrate how to differentiate the function while remaining memory-efficient. For sequence length 16384, the memory overhead of self-attention is reduced by 59X for inference and by 32X for differentiation.
Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction
Recent work has proposed artificial intelligence (AI) models that can learn to decide whether to make a prediction for an instance of a task or to delegate it to a human by considering both parties' capabilities. In simulations with synthetically generated or context-independent human predictions, delegation can help improve the performance of human-AI teams -- compared to humans or the AI model completing the task alone. However, so far, it remains unclear how humans perform and how they perceive the task when they are aware that an AI model delegated task instances to them. In an experimental study with 196 participants, we show that task performance and task satisfaction improve through AI delegation, regardless of whether humans are aware of the delegation. Additionally, we identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements in performance and satisfaction. Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration in workplaces.
Schrodinger's Memory: Large Language Models
Memory is the foundation of LLMs' functionality, yet past research has lacked an in-depth exploration of their memory capabilities and underlying theory. In this paper, we apply UAT theory to explain the memory mechanism of LLMs and propose a new approach for evaluating LLM performance by comparing the memory capacities of different models. Through extensive experiments, we validate our theory and the memory abilities of LLMs. Finally, we compare the capabilities of the human brain and LLMs, highlighting both their similarities and differences in terms of working mechanisms.
Accelerate Parallelizable Reasoning via Parallel Decoding within One Sequence
Recent advances in reasoning models have demonstrated significant improvements in accuracy, particularly for complex tasks such as mathematical reasoning, by employing detailed and comprehensive reasoning processes. However, generating these lengthy reasoning sequences is computationally expensive and time-consuming. To address this inefficiency, we leverage the inherent parallelizability of certain tasks to accelerate the reasoning process. Specifically, when multiple parallel reasoning branches exist, we decode multiple tokens per step using a specialized attention mask, processing them within a single sequence, avoiding additional memory usage. Experimental results show that our method achieves over 100% speedup in decoding time while maintaining the answer quality.
Cognitive Map for Language Models: Optimal Planning via Verbally Representing the World Model
Language models have demonstrated impressive capabilities across various natural language processing tasks, yet they struggle with planning tasks requiring multi-step simulations. Inspired by human cognitive processes, this paper investigates the optimal planning power of language models that can construct a cognitive map of a given environment. Our experiments demonstrate that cognitive map significantly enhances the performance of both optimal and reachable planning generation ability in the Gridworld path planning task. We observe that our method showcases two key characteristics similar to human cognition: generalization of its planning ability to extrapolated environments and rapid adaptation with limited training data. We hope our findings in the Gridworld task provide insights into modeling human cognitive processes in language models, potentially leading to the development of more advanced and robust systems that better resemble human cognition.
Answer Convergence as a Signal for Early Stopping in Reasoning
Chain-of-thought (CoT) prompting enhances reasoning in large language models (LLMs) but often leads to verbose and redundant outputs, thus increasing inference cost. We hypothesize that many reasoning steps are unnecessary for producing correct answers. To investigate this, we start with a systematic study to examine what is the minimum reasoning required for a model to reach a stable decision. We find that on math reasoning tasks like math, models typically converge to their final answers after 60\% of the reasoning steps, suggesting substantial redundancy in the remaining content. Based on these insights, we propose three inference-time strategies to improve efficiency: (1) early stopping via answer consistency, (2) boosting the probability of generating end-of-reasoning signals, and (3) a supervised method that learns when to stop based on internal activations. Experiments across five benchmarks and five open-weights LLMs show that our methods significantly reduce token usage with little or no accuracy drop. In particular, on NaturalQuestions, Answer Consistency reduces tokens by over 40\% while further improving accuracy. Our work underscores the importance of cost-effective reasoning methods that operate at inference time, offering practical benefits for real-world applications.
Inverse Scaling in Test-Time Compute
We construct evaluation tasks where extending the reasoning length of Large Reasoning Models (LRMs) deteriorates performance, exhibiting an inverse scaling relationship between test-time compute and accuracy. Our evaluation tasks span four categories: simple counting tasks with distractors, regression tasks with spurious features, deduction tasks with constraint tracking, and advanced AI risks. We identify five distinct failure modes when models reason for longer: 1) Claude models become increasingly distracted by irrelevant information; 2) OpenAI o-series models resist distractors but overfit to problem framings; 3) models shift from reasonable priors to spurious correlations; 4) all models show difficulties in maintaining focus on complex deductive tasks; and 5) extended reasoning may amplify concerning behaviors, with Claude Sonnet 4 showing increased expressions of self-preservation. These findings suggest that while test-time compute scaling remains promising for improving model capabilities, it may inadvertently reinforce problematic reasoning patterns. Our results demonstrate the importance of evaluating models across diverse reasoning lengths to identify and address these failure modes in LRMs.
Generative AI vs. AGI: The Cognitive Strengths and Weaknesses of Modern LLMs
A moderately detailed consideration of interactive LLMs as cognitive systems is given, focusing on LLMs circa mid-2023 such as ChatGPT, GPT-4, Bard, Llama, etc.. Cognitive strengths of these systems are reviewed, and then careful attention is paid to the substantial differences between the sort of cognitive system these LLMs are, and the sort of cognitive systems human beings are. It is found that many of the practical weaknesses of these AI systems can be tied specifically to lacks in the basic cognitive architectures according to which these systems are built. It is argued that incremental improvement of such LLMs is not a viable approach to working toward human-level AGI, in practical terms given realizable amounts of compute resources. This does not imply there is nothing to learn about human-level AGI from studying and experimenting with LLMs, nor that LLMs cannot form significant parts of human-level AGI architectures that also incorporate other ideas. Social and ethical matters regarding LLMs are very briefly touched from this perspective, which implies that while care should be taken regarding misinformation and other issues, and economic upheavals will need their own social remedies based on their unpredictable course as with any powerfully impactful technology, overall the sort of policy needed as regards modern LLMs is quite different than would be the case if a more credible approximation to human-level AGI were at hand.
Unlock Predictable Scaling from Emergent Abilities
The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.
Not All Thoughts are Generated Equal: Efficient LLM Reasoning via Multi-Turn Reinforcement Learning
Compressing long chain-of-thought (CoT) from large language models (LLMs) is an emerging strategy to improve the reasoning efficiency of LLMs. Despite its promising benefits, existing studies equally compress all thoughts within a long CoT, hindering more concise and effective reasoning. To this end, we first investigate the importance of different thoughts by examining their effectiveness and efficiency in contributing to reasoning through automatic long CoT chunking and Monte Carlo rollouts. Building upon the insights, we propose a theoretically bounded metric to jointly measure the effectiveness and efficiency of different thoughts. We then propose LongotimesShort, an efficient reasoning framework that enables two LLMs to collaboratively solve the problem: a long-thought LLM for more effectively generating important thoughts, while a short-thought LLM for efficiently generating remaining thoughts. Specifically, we begin by synthesizing a small amount of cold-start data to fine-tune LLMs for long-thought and short-thought reasoning styles, respectively. Furthermore, we propose a synergizing-oriented multi-turn reinforcement learning, focusing on the model self-evolution and collaboration between long-thought and short-thought LLMs. Experimental results show that our method enables Qwen2.5-7B and Llama3.1-8B to achieve comparable performance compared to DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B, while reducing token length by over 80% across the MATH500, AIME24/25, AMC23, and GPQA Diamond benchmarks. Our data and code are available at https://github.com/yasNing/Long-otimes-Short/.
When to Continue Thinking: Adaptive Thinking Mode Switching for Efficient Reasoning
Large reasoning models (LRMs) achieve remarkable performance via long reasoning chains, but often incur excessive computational overhead due to redundant reasoning, especially on simple tasks. In this work, we systematically quantify the upper bounds of LRMs under both Long-Thinking and No-Thinking modes, and uncover the phenomenon of "Internal Self-Recovery Mechanism" where models implicitly supplement reasoning during answer generation. Building on this insight, we propose Adaptive Self-Recovery Reasoning (ASRR), a framework that suppresses unnecessary reasoning and enables implicit recovery. By introducing accuracy-aware length reward regulation, ASRR adaptively allocates reasoning effort according to problem difficulty, achieving high efficiency with negligible performance sacrifice. Experiments across multiple benchmarks and models show that, compared with GRPO, ASRR reduces reasoning budget by up to 32.5% (1.5B) and 25.7% (7B) with minimal accuracy loss (1.2% and 0.6% pass@1), and significantly boosts harmless rates on safety benchmarks (up to +21.7%). Our results highlight the potential of ASRR for enabling efficient, adaptive, and safer reasoning in LRMs.
Identifying Suitable Tasks for Inductive Transfer Through the Analysis of Feature Attributions
Transfer learning approaches have shown to significantly improve performance on downstream tasks. However, it is common for prior works to only report where transfer learning was beneficial, ignoring the significant trial-and-error required to find effective settings for transfer. Indeed, not all task combinations lead to performance benefits, and brute-force searching rapidly becomes computationally infeasible. Hence the question arises, can we predict whether transfer between two tasks will be beneficial without actually performing the experiment? In this paper, we leverage explainability techniques to effectively predict whether task pairs will be complementary, through comparison of neural network activation between single-task models. In this way, we can avoid grid-searches over all task and hyperparameter combinations, dramatically reducing the time needed to find effective task pairs. Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
Are Optimal Algorithms Still Optimal? Rethinking Sorting in LLM-Based Pairwise Ranking with Batching and Caching
We introduce a novel framework for analyzing sorting algorithms in pairwise ranking prompting (PRP), re-centering the cost model around LLM inferences rather than traditional pairwise comparisons. While classical metrics based on comparison counts have traditionally been used to gauge efficiency, our analysis reveals that expensive LLM inferences overturn these predictions; accordingly, our framework encourages strategies such as batching and caching to mitigate inference costs. We show that algorithms optimal in the classical setting can lose efficiency when LLM inferences dominate the cost under certain optimizations.
Measuring AI Ability to Complete Long Tasks
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month.
Generative AI as a metacognitive agent: A comparative mixed-method study with human participants on ICF-mimicking exam performance
This study investigates the metacognitive capabilities of Large Language Models relative to human metacognition in the context of the International Coaching Federation ICF mimicking exam, a situational judgment test related to coaching competencies. Using a mixed method approach, we assessed the metacognitive performance, including sensitivity, accuracy in probabilistic predictions, and bias, of human participants and five advanced LLMs (GPT-4, Claude-3-Opus 3, Mistral Large, Llama 3, and Gemini 1.5 Pro). The results indicate that LLMs outperformed humans across all metacognitive metrics, particularly in terms of reduced overconfidence, compared to humans. However, both LLMs and humans showed less adaptability in ambiguous scenarios, adhering closely to predefined decision frameworks. The study suggests that Generative AI can effectively engage in human-like metacognitive processing without conscious awareness. Implications of the study are discussed in relation to development of AI simulators that scaffold cognitive and metacognitive aspects of mastering coaching competencies. More broadly, implications of these results are discussed in relation to development of metacognitive modules that lead towards more autonomous and intuitive AI systems.
Overclocking LLM Reasoning: Monitoring and Controlling Thinking Path Lengths in LLMs
Recently, techniques such as explicit structured reasoning have demonstrated strong test-time scaling behavior by enforcing a separation between the model's internal "thinking" process and the final response. A key factor influencing answer quality in this setting is the length of the thinking stage. When the reasoning is too short, the model may fail to capture the complexity of the task. Conversely, when it is too long, the model may overthink, leading to unnecessary computation and degraded performance. This paper explores and exploits the underlying mechanisms by which LLMs understand and regulate the length of their reasoning during explicit thought processes. First, we show that LLMs encode their progress through the reasoning process and introduce an interactive progress bar visualization, which is then used to reveal insights on the model's planning dynamics. Second, we manipulate the internal progress encoding during inference to reduce unnecessary steps and generate a more concise and decisive chain of thoughts. Our empirical results demonstrate that this "overclocking" method mitigates overthinking, improves answer accuracy, and reduces inference latency. Our code is publicly available.
The Efficiency Misnomer
Model efficiency is a critical aspect of developing and deploying machine learning models. Inference time and latency directly affect the user experience, and some applications have hard requirements. In addition to inference costs, model training also have direct financial and environmental impacts. Although there are numerous well-established metrics (cost indicators) for measuring model efficiency, researchers and practitioners often assume that these metrics are correlated with each other and report only few of them. In this paper, we thoroughly discuss common cost indicators, their advantages and disadvantages, and how they can contradict each other. We demonstrate how incomplete reporting of cost indicators can lead to partial conclusions and a blurred or incomplete picture of the practical considerations of different models. We further present suggestions to improve reporting of efficiency metrics.
Can Language Models Follow Multiple Turns of Entangled Instructions?
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.
Implicit Chain of Thought Reasoning via Knowledge Distillation
To augment language models with the ability to reason, researchers usually prompt or finetune them to produce chain of thought reasoning steps before producing the final answer. However, although people use natural language to reason effectively, it may be that LMs could reason more effectively with some intermediate computation that is not in natural language. In this work, we explore an alternative reasoning approach: instead of explicitly producing the chain of thought reasoning steps, we use the language model's internal hidden states to perform implicit reasoning. The implicit reasoning steps are distilled from a teacher model trained on explicit chain-of-thought reasoning, and instead of doing reasoning "horizontally" by producing intermediate words one-by-one, we distill it such that the reasoning happens "vertically" among the hidden states in different layers. We conduct experiments on a multi-digit multiplication task and a grade school math problem dataset and find that this approach enables solving tasks previously not solvable without explicit chain-of-thought, at a speed comparable to no chain-of-thought.
CHART-6: Human-Centered Evaluation of Data Visualization Understanding in Vision-Language Models
Data visualizations are powerful tools for communicating patterns in quantitative data. Yet understanding any data visualization is no small feat -- succeeding requires jointly making sense of visual, numerical, and linguistic inputs arranged in a conventionalized format one has previously learned to parse. Recently developed vision-language models are, in principle, promising candidates for developing computational models of these cognitive operations. However, it is currently unclear to what degree these models emulate human behavior on tasks that involve reasoning about data visualizations. This gap reflects limitations in prior work that has evaluated data visualization understanding in artificial systems using measures that differ from those typically used to assess these abilities in humans. Here we evaluated eight vision-language models on six data visualization literacy assessments designed for humans and compared model responses to those of human participants. We found that these models performed worse than human participants on average, and this performance gap persisted even when using relatively lenient criteria to assess model performance. Moreover, while relative performance across items was somewhat correlated between models and humans, all models produced patterns of errors that were reliably distinct from those produced by human participants. Taken together, these findings suggest significant opportunities for further development of artificial systems that might serve as useful models of how humans reason about data visualizations. All code and data needed to reproduce these results are available at: https://osf.io/e25mu/?view_only=399daff5a14d4b16b09473cf19043f18.
O1 Replication Journey -- Part 3: Inference-time Scaling for Medical Reasoning
Building upon our previous investigations of O1 replication (Part 1: Journey Learning [Qin et al., 2024] and Part 2: Distillation [Huang et al., 2024]), this work explores the potential of inference-time scaling in large language models (LLMs) for medical reasoning tasks, ranging from diagnostic decision-making to treatment planning. Through extensive experiments on medical benchmarks of varying complexity (MedQA, Medbullets, and JAMA Clinical Challenges), our investigation reveals several key insights: (1) Increasing inference time does lead to improved performance. With a modest training set of 500 samples, our model yields substantial performance improvements of 6%-11%. (2) Task complexity directly correlates with the required length of reasoning chains, confirming the necessity of extended thought processes for challenging problems. (3) The differential diagnoses generated by our model adhere to the principles of the hypothetico-deductive method, producing a list of potential conditions that may explain a patient's symptoms and systematically narrowing these possibilities by evaluating the evidence. These findings demonstrate the promising synergy between inference-time scaling and journey learning in advancing LLMs' real-world clinical reasoning capabilities.
From Thinking to Output: Chain-of-Thought and Text Generation Characteristics in Reasoning Language Models
Recently, there have been notable advancements in large language models (LLMs), demonstrating their growing abilities in complex reasoning. However, existing research largely overlooks a thorough and systematic comparison of these models' reasoning processes and outputs, particularly regarding their self-reflection pattern (also termed "Aha moment") and the interconnections across diverse domains. This paper proposes a novel framework for analyzing the reasoning characteristics of four cutting-edge large reasoning models (GPT-o1, DeepSeek-R1, Kimi-k1.5, and Grok-3) using keywords statistic and LLM-as-a-judge paradigm. Our approach connects their internal thinking processes with their final outputs. A diverse dataset consists of real-world scenario-based questions covering logical deduction, causal inference, and multi-step problem-solving. Additionally, a set of metrics is put forward to assess both the coherence of reasoning and the accuracy of the outputs. The research results uncover various patterns of how these models balance exploration and exploitation, deal with problems, and reach conclusions during the reasoning process. Through quantitative and qualitative comparisons, disparities among these models are identified in aspects such as the depth of reasoning, the reliance on intermediate steps, and the degree of similarity between their thinking processes and output patterns and those of GPT-o1. This work offers valuable insights into the trade-off between computational efficiency and reasoning robustness and provides practical recommendations for enhancing model design and evaluation in practical applications. We publicly release our project at: https://github.com/ChangWenhan/FromThinking2Output
Challenge LLMs to Reason About Reasoning: A Benchmark to Unveil Cognitive Depth in LLMs
In this work, we introduce a novel evaluation paradigm for Large Language Models, one that challenges them to engage in meta-reasoning. This approach addresses critical shortcomings in existing math problem-solving benchmarks, traditionally used to evaluate the cognitive capabilities of agents. Our paradigm shifts the focus from result-oriented assessments, which often overlook the reasoning process, to a more holistic evaluation that effectively differentiates the cognitive capabilities among models. For example, in our benchmark, GPT-4 demonstrates a performance ten times more accurate than GPT3-5. The significance of this new paradigm lies in its ability to reveal potential cognitive deficiencies in LLMs that current benchmarks, such as GSM8K, fail to uncover due to their saturation and lack of effective differentiation among varying reasoning abilities. Our comprehensive analysis includes several state-of-the-art math models from both open-source and closed-source communities, uncovering fundamental deficiencies in their training and evaluation approaches. This paper not only advocates for a paradigm shift in the assessment of LLMs but also contributes to the ongoing discourse on the trajectory towards Artificial General Intelligence (AGI). By promoting the adoption of meta-reasoning evaluation methods similar to ours, we aim to facilitate a more accurate assessment of the true cognitive abilities of LLMs.
KoLA: Carefully Benchmarking World Knowledge of Large Language Models
The unprecedented performance of large language models (LLMs) necessitates improvements in evaluations. Rather than merely exploring the breadth of LLM abilities, we believe meticulous and thoughtful designs are essential to thorough, unbiased, and applicable evaluations. Given the importance of world knowledge to LLMs, we construct a Knowledge-oriented LLM Assessment benchmark (KoLA), in which we carefully design three crucial factors: (1) For ability modeling, we mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering 19 tasks. (2) For data, to ensure fair comparisons, we use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, aiming to evaluate the capacity to handle unseen data and evolving knowledge. (3) For evaluation criteria, we adopt a contrastive system, including overall standard scores for better numerical comparability across tasks and models and a unique self-contrast metric for automatically evaluating knowledge hallucination. We evaluate 21 open-source and commercial LLMs and obtain some intriguing findings. The KoLA dataset and open-participation leaderboard are publicly released at https://kola.xlore.cn and will be continuously updated to provide references for developing LLMs and knowledge-related systems.
Efficient Online Processing with Deep Neural Networks
The capabilities and adoption of deep neural networks (DNNs) grow at an exhilarating pace: Vision models accurately classify human actions in videos and identify cancerous tissue in medical scans as precisely than human experts; large language models answer wide-ranging questions, generate code, and write prose, becoming the topic of everyday dinner-table conversations. Even though their uses are exhilarating, the continually increasing model sizes and computational complexities have a dark side. The economic cost and negative environmental externalities of training and serving models is in evident disharmony with financial viability and climate action goals. Instead of pursuing yet another increase in predictive performance, this dissertation is dedicated to the improvement of neural network efficiency. Specifically, a core contribution addresses the efficiency aspects during online inference. Here, the concept of Continual Inference Networks (CINs) is proposed and explored across four publications. CINs extend prior state-of-the-art methods developed for offline processing of spatio-temporal data and reuse their pre-trained weights, improving their online processing efficiency by an order of magnitude. These advances are attained through a bottom-up computational reorganization and judicious architectural modifications. The benefit to online inference is demonstrated by reformulating several widely used network architectures into CINs, including 3D CNNs, ST-GCNs, and Transformer Encoders. An orthogonal contribution tackles the concurrent adaptation and computational acceleration of a large source model into multiple lightweight derived models. Drawing on fusible adapter networks and structured pruning, Structured Pruning Adapters achieve superior predictive accuracy under aggressive pruning using significantly fewer learned weights compared to fine-tuning with pruning.
Unveiling Simplicities of Attention: Adaptive Long-Context Head Identification
The ability to process long contexts is crucial for many natural language processing tasks, yet it remains a significant challenge. While substantial progress has been made in enhancing the efficiency of attention mechanisms, there is still a gap in understanding how attention heads function in long-context settings. In this paper, we observe that while certain heads consistently attend to local information only, others swing between attending to local and long-context information depending on the query. This raises the question: can we identify which heads require long-context information to predict the next token accurately? We demonstrate that it's possible to predict which heads are crucial for long-context processing using only local keys. The core idea here is to exploit a simple model for the long-context scores via second moment approximations. These findings unveil simple properties of attention in the context of long sequences, and open the door to potentially significant gains in efficiency.
LLM4EFFI: Leveraging Large Language Models to Enhance Code Efficiency and Correctness
Large Language Models (LLMs), particularly Code LLMs, have demonstrated impressive performance in code generation. Current research primarily focuses on the correctness of generated code, while efficiency remains less explored. Recent works have focused on modifying the initial version of the code to improve its efficiency. However, such refinements are limited by the algorithmic design and overall logic of the initial code, resulting in only incremental improvements. In contrast, when human developers write high-quality code, they typically begin by designing several potential solutions at the logical level, evaluating various algorithms and their complexities, and then proceeding to implement and optimize the solution. In this study, we introduce \tool: Large Language Model for Code Efficiency, a novel framework that enables LLMs to generate code that balances both efficiency and correctness. Specifically, \tool divides the efficiency optimization process into two domains: algorithmic exploration in the logic domain and implementation optimization in the code domain. The correctness of the code is then guaranteed through a synthetic test case refinement process. This approach, which prioritizes efficiency before ensuring correctness, offers a new paradigm for efficient code generation. Experiments demonstrate that \tool consistently improves both efficiency and correctness, achieving new state-of-the-art performance in code efficiency benchmarks across various LLM backbones.
Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time
Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.
Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
Chain-of-thought prompting (e.g., "Let's think step-by-step") primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M -- 1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.
VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge
Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.
VisuoThink: Empowering LVLM Reasoning with Multimodal Tree Search
Recent advancements in Large Vision-Language Models have showcased remarkable capabilities. However, they often falter when confronted with complex reasoning tasks that humans typically address through visual aids and deliberate, step-by-step thinking. While existing methods have explored text-based slow thinking or rudimentary visual assistance, they fall short of capturing the intricate, interleaved nature of human visual-verbal reasoning processes. To overcome these limitations and inspired by the mechanisms of slow thinking in human cognition, we introduce VisuoThink, a novel framework that seamlessly integrates visuospatial and linguistic domains. VisuoThink facilitates multimodal slow thinking by enabling progressive visual-textual reasoning and incorporates test-time scaling through look-ahead tree search. Extensive experiments demonstrate that VisuoThink significantly enhances reasoning capabilities via inference-time scaling, even without fine-tuning, achieving state-of-the-art performance in tasks involving geometry and spatial reasoning.
ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure
Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method -- *retrieval-augmented thoughts* (RAT) -- revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated. Applying RAT to GPT-3.5, GPT-4, and CodeLLaMA-7b substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning. The demo page can be found at https://craftjarvis.github.io/RAT
Algorithmic Writing Assistance on Jobseekers' Resumes Increases Hires
There is a strong association between the quality of the writing in a resume for new labor market entrants and whether those entrants are ultimately hired. We show that this relationship is, at least partially, causal: a field experiment in an online labor market was conducted with nearly half a million jobseekers in which a treated group received algorithmic writing assistance. Treated jobseekers experienced an 8% increase in the probability of getting hired. Contrary to concerns that the assistance is taking away a valuable signal, we find no evidence that employers were less satisfied. We present a model in which better writing is not a signal of ability but helps employers ascertain ability, which rationalizes our findings.
Search for or Navigate to? Dual Adaptive Thinking for Object Navigation
"Search for" or "Navigate to"? When finding an object, the two choices always come up in our subconscious mind. Before seeing the target, we search for the target based on experience. After seeing the target, we remember the target location and navigate to. However, recently methods in object navigation field almost only consider using object association to enhance "search for" phase while neglect the importance of "navigate to" phase. Therefore, this paper proposes the dual adaptive thinking (DAT) method to flexibly adjust the different thinking strategies at different navigation stages. Dual thinking includes search thinking with the object association ability and navigation thinking with the target location ability. To make the navigation thinking more effective, we design the target-oriented memory graph (TOMG) to store historical target information and the target-aware multi-scale aggregator (TAMSA) to encode the relative target position. We assess our methods on the AI2-Thor dataset. Compared with the state-of-the-art (SOTA) method, our method reports 10.8%, 21.5% and 15.7% increase in success rate (SR), success weighted by path length (SPL) and success weighted by navigation efficiency (SNE), respectively.
REST: Stress Testing Large Reasoning Models by Asking Multiple Problems at Once
Recent Large Reasoning Models (LRMs) have achieved remarkable progress on task-specific benchmarks, yet their evaluation methods remain constrained by isolated problem-solving paradigms. Existing benchmarks predominantly assess single-question reasoning through sequential testing, resulting critical limitations: (1) vulnerability to data contamination and less challenging (e.g., DeepSeek-R1 achieves 97.0% on MATH500), forcing costly and perpetual creation of new questions with large human efforts, (2) failure to evaluate models under multi-context pressure, a key requirement for real-world deployment. To bridge this gap, we present REST (Reasoning Evaluation through Simultaneous Testing), a stress-testing framework that concurrently exposes LRMs to multiple problems simultaneously. Beyond basic reasoning, REST specifically evaluates several under-tested capabilities: contextual priority allocation, cross-problem interference resistance, and dynamic cognitive load management. Our evaluation reveals several striking findings: Even state-of-the-art (SOTA) models like DeepSeek-R1 exhibit substantial performance degradation under stress testing. Crucially, REST demonstrates stronger discriminative power than existing benchmarks, revealing pronounced performance differences among models that exhibit similar, near-ceiling performance under single-question evaluations. Some key mechanistic insights emerge from our analysis: (1) the "overthinking trap" is a critical factor contributing to the performance degradation; (2) the models trained with "long2short" technique preserve more accuracy of their single-problem performance under REST, outperforming standard-trained counterparts. These results establish REST as a cost-efficient, future-proof evaluation paradigm that better reflects real-world reasoning demands while reducing reliance on continuous human annotation.
A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders
It is widely accepted that information derived from analyzing speech (the acoustic signal) and language production (words and sentences) serves as a useful window into the health of an individual's cognitive ability. In fact, most neuropsychological testing batteries have a component related to speech and language where clinicians elicit speech from patients for subjective evaluation across a broad set of dimensions. With advances in speech signal processing and natural language processing, there has been recent interest in developing tools to detect more subtle changes in cognitive-linguistic function. This work relies on extracting a set of features from recorded and transcribed speech for objective assessments of speech and language, early diagnosis of neurological disease, and tracking of disease after diagnosis. With an emphasis on cognitive and thought disorders, in this paper we provide a review of existing speech and language features used in this domain, discuss their clinical application, and highlight their advantages and disadvantages. Broadly speaking, the review is split into two categories: language features based on natural language processing and speech features based on speech signal processing. Within each category, we consider features that aim to measure complementary dimensions of cognitive-linguistics, including language diversity, syntactic complexity, semantic coherence, and timing. We conclude the review with a proposal of new research directions to further advance the field.
Latent learning: episodic memory complements parametric learning by enabling flexible reuse of experiences
When do machine learning systems fail to generalize, and what mechanisms could improve their generalization? Here, we draw inspiration from cognitive science to argue that one weakness of machine learning systems is their failure to exhibit latent learning -- learning information that is not relevant to the task at hand, but that might be useful in a future task. We show how this perspective links failures ranging from the reversal curse in language modeling to new findings on agent-based navigation. We then highlight how cognitive science points to episodic memory as a potential part of the solution to these issues. Correspondingly, we show that a system with an oracle retrieval mechanism can use learning experiences more flexibly to generalize better across many of these challenges. We also identify some of the essential components for effectively using retrieval, including the importance of within-example in-context learning for acquiring the ability to use information across retrieved examples. In summary, our results illustrate one possible contributor to the relative data inefficiency of current machine learning systems compared to natural intelligence, and help to understand how retrieval methods can complement parametric learning to improve generalization.
Can OpenAI o1 outperform humans in higher-order cognitive thinking?
This study evaluates the performance of OpenAI's o1-preview model in higher-order cognitive domains, including critical thinking, systematic thinking, computational thinking, data literacy, creative thinking, logical reasoning, and scientific reasoning. Using established benchmarks, we compared the o1-preview models's performance to human participants from diverse educational levels. o1-preview achieved a mean score of 24.33 on the Ennis-Weir Critical Thinking Essay Test (EWCTET), surpassing undergraduate (13.8) and postgraduate (18.39) participants (z = 1.60 and 0.90, respectively). In systematic thinking, it scored 46.1, SD = 4.12 on the Lake Urmia Vignette, significantly outperforming the human mean (20.08, SD = 8.13, z = 3.20). For data literacy, o1-preview scored 8.60, SD = 0.70 on Merk et al.'s "Use Data" dimension, compared to the human post-test mean of 4.17, SD = 2.02 (z = 2.19). On creative thinking tasks, the model achieved originality scores of 2.98, SD = 0.73, higher than the human mean of 1.74 (z = 0.71). In logical reasoning (LogiQA), it outperformed humans with average 90%, SD = 10% accuracy versus 86%, SD = 6.5% (z = 0.62). For scientific reasoning, it achieved near-perfect performance (mean = 0.99, SD = 0.12) on the TOSLS,, exceeding the highest human scores of 0.85, SD = 0.13 (z = 1.78). While o1-preview excelled in structured tasks, it showed limitations in problem-solving and adaptive reasoning. These results demonstrate the potential of AI to complement education in structured assessments but highlight the need for ethical oversight and refinement for broader applications.
RepIt: Representing Isolated Targets to Steer Language Models
While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
Exploring the sustainable scaling of AI dilemma: A projective study of corporations' AI environmental impacts
The rapid growth of artificial intelligence (AI), particularly Large Language Models (LLMs), has raised concerns regarding its global environmental impact that extends beyond greenhouse gas emissions to include consideration of hardware fabrication and end-of-life processes. The opacity from major providers hinders companies' abilities to evaluate their AI-related environmental impacts and achieve net-zero targets. In this paper, we propose a methodology to estimate the environmental impact of a company's AI portfolio, providing actionable insights without necessitating extensive AI and Life-Cycle Assessment (LCA) expertise. Results confirm that large generative AI models consume up to 4600x more energy than traditional models. Our modelling approach, which accounts for increased AI usage, hardware computing efficiency, and changes in electricity mix in line with IPCC scenarios, forecasts AI electricity use up to 2030. Under a high adoption scenario, driven by widespread Generative AI and agents adoption associated to increasingly complex models and frameworks, AI electricity use is projected to rise by a factor of 24.4. Mitigating the environmental impact of Generative AI by 2030 requires coordinated efforts across the AI value chain. Isolated measures in hardware efficiency, model efficiency, or grid improvements alone are insufficient. We advocate for standardized environmental assessment frameworks, greater transparency from the all actors of the value chain and the introduction of a "Return on Environment" metric to align AI development with net-zero goals.
OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI
The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problem-solving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.
B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.
Probing Mechanical Reasoning in Large Vision Language Models
Mechanical reasoning is a hallmark of human intelligence, defined by its ubiquitous yet irreplaceable role in human activities ranging from routine tasks to civil engineering. Embedding machines with mechanical reasoning is therefore an important step towards building human-level artificial intelligence. Here, we leveraged 155 cognitive experiments to test the understanding of system stability, gears and pulley systems, leverage principle, inertia and motion, and fluid mechanics in 26 Vision Language Models (VLMs). Results indicate that VLMs consistently perform worse than humans on all domains, while demonstrate significant difficulty in reasoning about gear systems and fluid mechanics. Notably, their performance on these tasks do not improve as number of parameters increase, suggesting that current attention-based architecture may fail to grasp certain underlying mechanisms required for mechanical reasoning, particularly those pertaining to mental simulations.
Language models show human-like content effects on reasoning
Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of the reasoning problem. For example, humans reason much more reliably about logical rules that are grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences of language models similarly endow them with prior expectations that reflect human knowledge and beliefs. We therefore hypothesized that language models would show human-like content effects on abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason, 1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffman et al., 2022) reflect many of the same patterns observed in humans across these tasks -- like humans, models reason more effectively about believable situations than unrealistic or abstract ones. Our findings have implications for understanding both these cognitive effects, and the factors that contribute to language model performance.
Bingo: Boosting Efficient Reasoning of LLMs via Dynamic and Significance-based Reinforcement Learning
Large language models have demonstrated impressive reasoning capabilities, yet they often suffer from inefficiencies due to unnecessarily verbose or redundant outputs. While many works have explored reinforcement learning (RL) to enhance reasoning abilities, most primarily focus on improving accuracy, with limited attention to reasoning efficiency. Some existing approaches introduce direct length-based rewards to encourage brevity, but this often leads to noticeable drops in accuracy. In this paper, we propose Bingo, an RL framework that advances length-based reward design to boost efficient reasoning. Bingo incorporates two key mechanisms: a significance-aware length reward, which gradually guides the model to reduce only insignificant tokens, and a dynamic length reward, which initially encourages elaborate reasoning for hard questions but decays over time to improve overall efficiency. Experiments across multiple reasoning benchmarks show that Bingo improves both accuracy and efficiency. It outperforms the vanilla reward and several other length-based reward baselines in RL, achieving a favorable trade-off between accuracy and efficiency. These results underscore the potential of training LLMs explicitly for efficient reasoning.
MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions
Large vision-language models (VLMs) face challenges in achieving robust, transferable reasoning abilities due to reliance on labor-intensive manual instruction datasets or computationally expensive self-supervised methods. To address these issues, we introduce MindGYM, a framework that enhances VLMs through synthetic self-challenging questions, consisting of three stages: (1) Seed Single-Hop Question Synthesis, generating cognitive questions across textual (e.g., logical deduction) and multimodal contexts (e.g., diagram-based queries) spanning eight semantic areas like ethical analysis; (2) Challenging Multi-Hop Question Synthesis, combining seed questions via diverse principles like bridging, visual-textual alignment, to create multi-step problems demanding deeper reasoning; and (3) Thinking-Induced Curriculum Fine-Tuning, a structured pipeline that progressively trains the model from scaffolded reasoning to standalone inference. By leveraging the model's self-synthesis capability, MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks. Extensive evaluations on seven benchmarks demonstrate superior performance over strong baselines, with notable improvements (+15.77% win rates) in reasoning depth and breadth validated via GPT-based scoring. MindGYM underscores the viability of self-challenging for refining VLM capabilities while minimizing human intervention and resource demands. Code and data are released to advance multimodal reasoning research.
How Efficient Are Today's Continual Learning Algorithms?
Supervised Continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data. While most work has focused on overcoming catastrophic forgetting, one of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time. Despite recent continual learning methods largely solving the catastrophic forgetting problem, there has been little attention paid to the efficiency of these algorithms. Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage. Some methods even require more compute than training from scratch! We argue that for continual learning to have real-world applicability, the research community cannot ignore the resources used by these algorithms. There is more to continual learning than mitigating catastrophic forgetting.
General Scales Unlock AI Evaluation with Explanatory and Predictive Power
Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Recently, large reasoning models demonstrate exceptional performance on various tasks. However, reasoning models inefficiently over-process both trivial and complex queries, leading to resource waste and prolonged user latency. To address this challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strategy for efficient reasoning. Our approach adopts a dual-phase training paradigm: first, the model learns to pre-estimate the reasoning cost based on the difficulty of the query. Then, we introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length. SelfBudgeter allows users to anticipate generation time and make informed decisions about continuing or interrupting the process. Furthermore, our method enables direct manipulation of reasoning length via pre-filling token budget. Experimental results demonstrate that SelfBudgeter can rationally allocate budgets according to problem complexity, achieving up to 74.47% response length compression on the MATH benchmark while maintaining nearly undiminished accuracy.
Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When and Why Does It Work?
While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.
Efficient Reasoning Models: A Survey
Reasoning models have demonstrated remarkable progress in solving complex and logic-intensive tasks by generating extended Chain-of-Thoughts (CoTs) prior to arriving at a final answer. Yet, the emergence of this "slow-thinking" paradigm, with numerous tokens generated in sequence, inevitably introduces substantial computational overhead. To this end, it highlights an urgent need for effective acceleration. This survey aims to provide a comprehensive overview of recent advances in efficient reasoning. It categorizes existing works into three key directions: (1) shorter - compressing lengthy CoTs into concise yet effective reasoning chains; (2) smaller - developing compact language models with strong reasoning capabilities through techniques such as knowledge distillation, other model compression techniques, and reinforcement learning; and (3) faster - designing efficient decoding strategies to accelerate inference. A curated collection of papers discussed in this survey is available in our GitHub repository.
LazyEviction: Lagged KV Eviction with Attention Pattern Observation for Efficient Long Reasoning
Large Language Models (LLMs) exhibit enhanced reasoning capabilities by employing Chain-of-Thought (CoT). However, the extended reasoning sequences introduce significant GPU memory overhead due to increased key-value (KV) cache size, particularly in tasks requiring long reasoning sequences, such as mathematics and programming. Existing KV cache compression methods mitigate memory bottlenecks but struggle in long reasoning tasks. In this paper, we analyze attention patterns in reasoning tasks and reveal a Token Importance Recurrence phenomenon: a large proportion of tokens receive renewed attention after multiple decoding steps, which is failed to capture by existing works and may lead to unpredictable eviction on such periodically critical tokens. To address this, we propose LazyEviction, a lagged KV eviction framework designed to maintain reasoning performance while reducing KV memory. LazyEviction is an Observation Window-based Lagged Eviction Mechanism retaining latent recurring tokens by performing lagged evictions across decoding steps, which contains two key components: (1) Recurrence Interval Tracking for capturing temporal variations in token importance, and (2) an Maximum Recurrence Interval-Centric Eviction Policy that prioritizes eviction based on tokens' recurrence patterns. Extensive experiments demonstrate that LazyEviction reduces KV cache size by 50% while maintaining comparable accuracy on mathematics reasoning datasets, outperforming state-of-the-art methods. Our findings highlight the importance of preserving recurring tokens, which are critical for maintaining knowledge continuity in multi-step reasoning tasks.
Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect using the Only Connect Wall Dataset
The quest for human imitative AI has been an enduring topic in AI research since its inception. The technical evolution and emerging capabilities of the latest cohort of large language models (LLMs) have reinvigorated the subject beyond academia to the cultural zeitgeist. While recent NLP evaluation benchmark tasks test some aspects of human-imitative behaviour (e.g., BIG-bench's 'human-like behavior' tasks), few, if not none, examine creative problem solving abilities. Creative problem solving in humans is a well-studied topic in cognitive neuroscience with standardized tests that predominantly use the ability to associate (heterogeneous) connections among clue words as a metric for creativity. Exposure to misleading stimuli - distractors dubbed red herrings - impede human performance in such tasks via the fixation effect and Einstellung paradigm. In cognitive neuroscience studies, such fixations are experimentally induced by pre-exposing participants to orthographically similar incorrect words to subsequent word-fragments or clues. The popular British quiz show Only Connect's Connecting Wall segment essentially mimics Mednick's Remote Associates Test (RAT) formulation with built-in, deliberate red herrings, which makes it an ideal proxy dataset to explore and study fixation effect and Einstellung paradigm from cognitive neuroscience in LLMs. In addition to presenting the novel Only Connect Wall (OCW) dataset, we also report results from our evaluation of selected pre-trained language models and LLMs (including OpenAI's GPT series) on creative problem solving tasks like grouping clue words by heterogeneous connections, and identifying correct open knowledge domain connections in respective groups. The code and link to the dataset are available at https://github.com/TaatiTeam/OCW.
A Case Study of Web App Coding with OpenAI Reasoning Models
This paper presents a case study of coding tasks by the latest reasoning models of OpenAI, i.e. o1-preview and o1-mini, in comparison with other frontier models. The o1 models deliver SOTA results for WebApp1K, a single-task benchmark. To this end, we introduce WebApp1K-Duo, a harder benchmark doubling number of tasks and test cases. The new benchmark causes the o1 model performances to decline significantly, falling behind Claude 3.5. Moreover, they consistently fail when confronted with atypical yet correct test cases, a trap non-reasoning models occasionally avoid. We hypothesize that the performance variability is due to instruction comprehension. Specifically, the reasoning mechanism boosts performance when all expectations are captured, meanwhile exacerbates errors when key expectations are missed, potentially impacted by input lengths. As such, we argue that the coding success of reasoning models hinges on the top-notch base model and SFT to ensure meticulous adherence to instructions.
Scaling Evaluation-time Compute with Reasoning Models as Process Evaluators
As language model (LM) outputs get more and more natural, it is becoming more difficult than ever to evaluate their quality. Simultaneously, increasing LMs' "thinking" time through scaling test-time compute has proven an effective technique to solve challenging problems in domains such as math and code. This raises a natural question: can an LM's evaluation capability also be improved by spending more test-time compute? To answer this, we investigate employing reasoning models-LMs that natively generate long chain-of-thought reasoning-as evaluators. Specifically, we examine methods to leverage more test-time compute by (1) using reasoning models, and (2) prompting these models to evaluate not only the response as a whole (i.e., outcome evaluation) but also assess each step in the response separately (i.e., process evaluation). In experiments, we observe that the evaluator's performance improves monotonically when generating more reasoning tokens, similar to the trends observed in LM-based generation. Furthermore, we use these more accurate evaluators to rerank multiple generations, and demonstrate that spending more compute at evaluation time can be as effective as using more compute at generation time in improving an LM's problem-solving capability.
What makes Reasoning Models Different? Follow the Reasoning Leader for Efficient Decoding
Large reasoning models (LRMs) achieve strong reasoning performance by emitting long chains of thought. Yet, these verbose traces slow down inference and often drift into unnecessary detail, known as the overthinking phenomenon. To better understand LRMs' behavior, we systematically analyze the token-level misalignment between reasoning and non-reasoning models. While it is expected that their primary difference lies in the stylistic "thinking cues", LRMs uniquely exhibit two pivotal, previously under-explored phenomena: a Global Misalignment Rebound, where their divergence from non-reasoning models persists or even grows as response length increases, and more critically, a Local Misalignment Diminish, where the misalignment concentrates at the "thinking cues" each sentence starts with but rapidly declines in the remaining of the sentence. Motivated by the Local Misalignment Diminish, we propose FoReaL-Decoding, a collaborative fast-slow thinking decoding method for cost-quality trade-off. In FoReaL-Decoding, a Leading model leads the first few tokens for each sentence, and then a weaker draft model completes the following tokens to the end of each sentence. FoReaL-Decoding adopts a stochastic gate to smoothly interpolate between the small and the large model. On four popular math-reasoning benchmarks (AIME24, GPQA-Diamond, MATH500, AMC23), FoReaL-Decoding reduces theoretical FLOPs by 30 to 50% and trims CoT length by up to 40%, while preserving 86 to 100% of model performance. These results establish FoReaL-Decoding as a simple, plug-and-play route to controllable cost-quality trade-offs in reasoning-centric tasks.
Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations
Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, but they can also fail to do so. This suggests some degree of metacognition -- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control. Metacognitive abilities enhance AI capabilities but raise safety concerns, as models might obscure their internal processes to evade neural-activation-based oversight mechanisms designed to detect harmful behaviors. Given society's increased reliance on these models, it is critical that we understand the limits of their metacognitive abilities, particularly their ability to monitor their internal activations. To address this, we introduce a neuroscience-inspired neurofeedback paradigm designed to quantify the ability of LLMs to explicitly report and control their activation patterns. By presenting models with sentence-label pairs where labels correspond to sentence-elicited internal activations along specific directions in the neural representation space, we demonstrate that LLMs can learn to report and control these activations. The performance varies with several factors: the number of example pairs provided, the semantic interpretability of the target neural direction, and the variance explained by that direction. These results reveal a "metacognitive space" with dimensionality much lower than the model's neural space, suggesting LLMs can monitor only a subset of their neural mechanisms. Our findings provide empirical evidence quantifying metacognitive capabilities in LLMs, with significant implications for AI safety.
In-Memory Learning: A Declarative Learning Framework for Large Language Models
The exploration of whether agents can align with their environment without relying on human-labeled data presents an intriguing research topic. Drawing inspiration from the alignment process observed in intelligent organisms, where declarative memory plays a pivotal role in summarizing past experiences, we propose a novel learning framework. The agents adeptly distill insights from past experiences, refining and updating existing notes to enhance their performance in the environment. This entire process transpires within the memory components and is implemented through natural language, so we character this framework as In-memory Learning. We also delve into the key features of benchmarks designed to evaluate the self-improvement process. Through systematic experiments, we demonstrate the effectiveness of our framework and provide insights into this problem.
TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.
The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established math and coding benchmarks, emphasizing final answer accuracy. However, this evaluation paradigm often suffers from contamination and does not provide insights into the reasoning traces. In this work, we systematically investigate these gaps with the help of controllable puzzle environments that allow precise manipulation of complexity while maintaining consistent logical structures. This setup enables the analysis of not only final answers but also the internal reasoning traces, offering insights into how LRMs think. Through extensive experiments, we show that LRMs face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counterintuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then declines despite having remaining token budget. By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse. We found that LRMs have limitations in exact computation: they fail to use explicit algorithms and reason inconsistently across scales. We also investigate the reasoning traces in more depth, studying the patterns of explored solutions and analyzing the models' computational behavior, shedding light on their strengths, limitations, and raising questions about their reasoning capabilities.
Training a Scientific Reasoning Model for Chemistry
Reasoning models are large language models that emit a long chain-of-thought before answering, providing both higher accuracy and explicit reasoning for their response. A major question has been whether language model reasoning generalizes beyond mathematics, programming, and logic, where most previous work has focused. We demonstrate that reasoning models can be post-trained for chemistry without additional domain pretraining, and require substantially less data compared to contemporary domain-specific models. We report ether0, a 24B parameter LLM (based on Mistral-Small-24B) that can reason in natural language and respond with chemical structures. This reasoning model was trained with reinforcement learning on 640,730 experimentally-grounded chemistry problems across 375 tasks ranging from synthesizability, to blood-brain barrier permeability, to human receptor activity, to scent. Our model exceeds general-purpose chemistry models, frontier models, and human experts on molecular design tasks. It is also more data efficient relative to specialized models. We anticipate that this method can be applied to train data-efficient language models specialized for tasks across a wide variety of scientific domains.
Eliminating Reasoning via Inferring with Planning: A New Framework to Guide LLMs' Non-linear Thinking
Chain-of-Thought(CoT) prompting and its variants explore equipping large language models (LLMs) with high-level reasoning abilities by emulating human-like linear cognition and logic. However, the human mind is complicated and mixed with both linear and nonlinear thinking. In this work, we propose Inferential Exclusion Prompting (IEP), a novel prompting that combines the principles of elimination and inference in order to guide LLMs to think non-linearly. IEP guides LLMs to plan and then utilize Natural Language Inference (NLI) to deduce each possible solution's entailment relation with context, commonsense, or facts, therefore yielding a broader perspective by thinking back for inferring. This forward planning and backward eliminating process allows IEP to better simulate the complex human thinking processes compared to other CoT-based methods, which only reflect linear cognitive processes. We conducted a series of empirical studies and have corroborated that IEP consistently outperforms CoT across various tasks. Additionally, we observe that integrating IEP and CoT further improves the LLMs' performance on certain tasks, highlighting the necessity of equipping LLMs with mixed logic processes. Moreover, to better evaluate comprehensive features inherent in human logic, we introduce Mental-Ability Reasoning Benchmark (MARB). The benchmark comprises six novel subtasks with a total of 9,115 questions, among which 1,685 are developed with hand-crafted rationale references. We believe both IEP and MARB can serve as a promising direction for unveiling LLMs' logic and verbal reasoning abilities and drive further advancements. MARB will be available at ~anonymity link soon.
Can Language Models Act as Knowledge Bases at Scale?
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries through large-scale pre-training. However, the efficacy of these models in memorizing and reasoning among large-scale structured knowledge, especially world knowledge that explicitly covers abundant factual information remains questionable. Addressing this gap, our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata. Specifically, we focus on three crucial aspects to study the viability: (1) the efficiency of LLMs with different sizes in memorizing the exact knowledge in the large-scale KB; (2) the flexibility of recalling the memorized knowledge in response to natural language queries; (3) the capability to infer new knowledge through reasoning. Our findings indicate that while LLMs hold promise as large-scale KBs capable of retrieving and responding with flexibility, enhancements in their reasoning capabilities are necessary to fully realize their potential.
Human-in-the-loop Embodied Intelligence with Interactive Simulation Environment for Surgical Robot Learning
Surgical robot automation has attracted increasing research interest over the past decade, expecting its potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied intelligence has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant research. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how the human demonstrations would affect policy learning. In this work, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. We showcase the improvement of our simulation environment with the designed new features, and validate effectiveness of incorporating human factors in embodied intelligence through the use of human demonstrations and reinforcement learning as a representative example. Promising results are obtained in terms of learning efficiency. Lastly, five new surgical robot training tasks are developed and released, with which we hope to pave the way for future research on surgical embodied intelligence. Our learning platform is publicly released and will be continuously updated in the website: https://med-air.github.io/SurRoL.
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employing a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. To validate the effectiveness of our framework, we conducted extensive experiments across a range of generative and reasoning tasks. These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity. The framework's ability to iteratively expand its search space while retaining contextually relevant information results.
Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
Do large language models (LLMs) solve reasoning tasks by learning robust generalizable algorithms, or do they memorize training data? To investigate this question, we use arithmetic reasoning as a representative task. Using causal analysis, we identify a subset of the model (a circuit) that explains most of the model's behavior for basic arithmetic logic and examine its functionality. By zooming in on the level of individual circuit neurons, we discover a sparse set of important neurons that implement simple heuristics. Each heuristic identifies a numerical input pattern and outputs corresponding answers. We hypothesize that the combination of these heuristic neurons is the mechanism used to produce correct arithmetic answers. To test this, we categorize each neuron into several heuristic types-such as neurons that activate when an operand falls within a certain range-and find that the unordered combination of these heuristic types is the mechanism that explains most of the model's accuracy on arithmetic prompts. Finally, we demonstrate that this mechanism appears as the main source of arithmetic accuracy early in training. Overall, our experimental results across several LLMs show that LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics".
AI capabilities can be significantly improved without expensive retraining
State-of-the-art AI systems can be significantly improved without expensive retraining via "post-training enhancements"-techniques applied after initial training like fine-tuning the system to use a web browser. We review recent post-training enhancements, categorizing them into five types: tool-use, prompting methods, scaffolding, solution selection, and data generation. Different enhancements improve performance on different tasks, making it hard to compare their significance. So we translate improvements from different enhancements into a common currency, the compute-equivalent gain: how much additional training compute would be needed to improve performance by the same amount as the enhancement. Our non-experimental work shows that post-training enhancements have significant benefits: most surveyed enhancements improve benchmark performance by more than a 5x increase in training compute, some by more than 20x. Post-training enhancements are relatively cheap to develop: fine-tuning costs are typically <1% of the original training cost. Governing the development of capable post-training enhancements may be challenging because frontier models could be enhanced by a wide range of actors.
Can Large Language Models Adapt to Other Agents In-Context?
As the research community aims to build better AI assistants that are more dynamic and personalized to the diversity of humans that they interact with, there is increased interest in evaluating the theory of mind capabilities of large language models (LLMs). Indeed, several recent studies suggest that LLM theory of mind capabilities are quite impressive, approximating human-level performance. Our paper aims to rebuke this narrative and argues instead that past studies were not directly measuring agent performance, potentially leading to findings that are illusory in nature as a result. We draw a strong distinction between what we call literal theory of mind i.e. measuring the agent's ability to predict the behavior of others and functional theory of mind i.e. adapting to agents in-context based on a rational response to predictions of their behavior. We find that top performing open source LLMs may display strong capabilities in literal theory of mind, depending on how they are prompted, but seem to struggle with functional theory of mind -- even when partner policies are exceedingly simple. Our work serves to highlight the double sided nature of inductive bias in LLMs when adapting to new situations. While this bias can lead to strong performance over limited horizons, it often hinders convergence to optimal long-term behavior.
Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following
While advancements in the reasoning abilities of LLMs have significantly enhanced their performance in solving mathematical problems, coding tasks, and general puzzles, their effectiveness in accurately adhering to instructions remains inconsistent, particularly with more complex directives. Our investigation identifies lazy reasoning during the thinking stage as the primary factor contributing to poor instruction adherence. To mitigate this issue, we propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking, essential for satisfying strict instruction constraints. Specifically, we first generate instructions with complex constraints and apply a filtering process to obtain valid prompts, resulting in three distinct prompt datasets categorized as hard, easy, and pass. Then, we employ rejection sampling on the pass prompts to curate a small yet high-quality dataset, enabling a cold-start initialization of the model and facilitating its adaptation to effective reasoning patterns. Subsequently, we employ an entropy-preserving supervised fine-tuning (Entropy-SFT) strategy coupled with token-wise entropy-adaptive (TEA-RL) reinforcement learning guided by rule-based dense rewards. This approach encourages the model to transform its reasoning mechanism, ultimately fostering generalizable reasoning abilities that encompass preview and self-checking. Extensive experiments conducted on instruction-following benchmarks demonstrate remarkable performance improvements across various model scales. Notably, our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
LongPerceptualThoughts: Distilling System-2 Reasoning for System-1 Perception
Recent reasoning models through test-time scaling have demonstrated that long chain-of-thoughts can unlock substantial performance boosts in hard reasoning tasks such as math and code. However, the benefit of such long thoughts for system-2 reasoning is relatively less explored in other domains such as perceptual tasks where shallower, system-1 reasoning seems sufficient. In this paper, we introduce LongPerceptualThoughts, a new synthetic dataset with 30K long-thought traces for perceptual tasks. The key challenges in synthesizing elaborate reasoning thoughts for perceptual tasks are that off-the-shelf models are not yet equipped with such thinking behavior and that it is not straightforward to build a reliable process verifier for perceptual tasks. Thus, we propose a novel three-stage data synthesis framework that first synthesizes verifiable multiple-choice questions from dense image descriptions, then extracts simple CoTs from VLMs for those verifiable problems, and finally expands those simple thoughts to elaborate long thoughts via frontier reasoning models. In controlled experiments with a strong instruction-tuned 7B model, we demonstrate notable improvements over existing visual reasoning data-generation methods. Our model, trained on the generated dataset, achieves an average +3.4 points improvement over 5 vision-centric benchmarks, including +11.8 points on V^* Bench. Notably, despite being tuned for vision tasks, it also improves performance on the text reasoning benchmark, MMLU-Pro, by +2 points.
Language Matters: How Do Multilingual Input and Reasoning Paths Affect Large Reasoning Models?
Large reasoning models (LRMs) have demonstrated impressive performance across a range of reasoning tasks, yet little is known about their internal reasoning processes in multilingual settings. We begin with a critical question: {\it In which language do these models reason when solving problems presented in different languages?} Our findings reveal that, despite multilingual training, LRMs tend to default to reasoning in high-resource languages (e.g., English) at test time, regardless of the input language. When constrained to reason in the same language as the input, model performance declines, especially for low-resource languages. In contrast, reasoning in high-resource languages generally preserves performance. We conduct extensive evaluations across reasoning-intensive tasks (MMMLU, MATH-500) and non-reasoning benchmarks (CulturalBench, LMSYS-toxic), showing that the effect of language choice varies by task type: input-language reasoning degrades performance on reasoning tasks but benefits cultural tasks, while safety evaluations exhibit language-specific behavior. By exposing these linguistic biases in LRMs, our work highlights a critical step toward developing more equitable models that serve users across diverse linguistic backgrounds.
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
Understanding Emergent Abilities of Language Models from the Loss Perspective
Recent studies have put into question the belief that emergent abilities in language models are exclusive to large models. This skepticism arises from two observations: 1) smaller models can also exhibit high performance on emergent abilities and 2) there is doubt on the discontinuous metrics used to measure these abilities. In this paper, we propose to study emergent abilities in the lens of pre-training loss, instead of model size or training compute. We demonstrate that the models with the same pre-training loss, but different model and data sizes, generate the same performance on various downstream tasks. We also discover that a model exhibits emergent abilities on certain tasks -- regardless of the continuity of metrics -- when its pre-training loss falls below a specific threshold. Before reaching this threshold, its performance remains at the level of random guessing. This inspires us to redefine emergent abilities as those that manifest in models with lower pre-training losses, highlighting that these abilities cannot be predicted by merely extrapolating the performance trends of models with higher pre-training losses.
Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness.
Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning
Deductive reasoning plays a pivotal role in the formulation of sound and cohesive arguments. It allows individuals to draw conclusions that logically follow, given the truth value of the information provided. Recent progress in the domain of large language models (LLMs) has showcased their capability in executing deductive reasoning tasks. Nonetheless, a significant portion of research primarily assesses the accuracy of LLMs in solving such tasks, often overlooking a deeper analysis of their reasoning behavior. In this study, we draw upon principles from cognitive psychology to examine inferential strategies employed by LLMs, through a detailed evaluation of their responses to propositional logic problems. Our findings indicate that LLMs display reasoning patterns akin to those observed in humans, including strategies like supposition following or chain construction. Moreover, our research demonstrates that the architecture and scale of the model significantly affect its preferred method of reasoning, with more advanced models tending to adopt strategies more frequently than less sophisticated ones. Importantly, we assert that a model's accuracy, that is the correctness of its final conclusion, does not necessarily reflect the validity of its reasoning process. This distinction underscores the necessity for more nuanced evaluation procedures in the field.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
We explore how generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.
Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking, generating overly long and redundant reasoning trajectories. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we explicitly bootstrap such ability to alleviate overthinking in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition of LRMs. Specifically, we first inject difficulty hypnosis into output prefixes to guide the model toward adaptive reasoning depth, trained on a hybrid dataset mixing short and long reasoning paths. Then, we incorporate redundancy hypnosis, which supervises the intermediate reasoning steps to identify and eliminate unnecessary reasoning patterns. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs by over 70% on easy tasks and 40% on hard tasks while maintaining performance stability. The resulting outputs exhibit clear signs of difficulty-aware capabilities and reduced redundancy (e.g., reflection and looping).
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
The Stochastic Parrot on LLM's Shoulder: A Summative Assessment of Physical Concept Understanding
In a systematic way, we investigate a widely asked question: Do LLMs really understand what they say?, which relates to the more familiar term Stochastic Parrot. To this end, we propose a summative assessment over a carefully designed physical concept understanding task, PhysiCo. Our task alleviates the memorization issue via the usage of grid-format inputs that abstractly describe physical phenomena. The grids represents varying levels of understanding, from the core phenomenon, application examples to analogies to other abstract patterns in the grid world. A comprehensive study on our task demonstrates: (1) state-of-the-art LLMs, including GPT-4o, o1 and Gemini 2.0 flash thinking, lag behind humans by ~40%; (2) the stochastic parrot phenomenon is present in LLMs, as they fail on our grid task but can describe and recognize the same concepts well in natural language; (3) our task challenges the LLMs due to intrinsic difficulties rather than the unfamiliar grid format, as in-context learning and fine-tuning on same formatted data added little to their performance.
Explaining grokking through circuit efficiency
One of the most surprising puzzles in neural network generalisation is grokking: a network with perfect training accuracy but poor generalisation will, upon further training, transition to perfect generalisation. We propose that grokking occurs when the task admits a generalising solution and a memorising solution, where the generalising solution is slower to learn but more efficient, producing larger logits with the same parameter norm. We hypothesise that memorising circuits become more inefficient with larger training datasets while generalising circuits do not, suggesting there is a critical dataset size at which memorisation and generalisation are equally efficient. We make and confirm four novel predictions about grokking, providing significant evidence in favour of our explanation. Most strikingly, we demonstrate two novel and surprising behaviours: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalisation to partial rather than perfect test accuracy.
LIMI: Less is More for Agency
We define Agency as the emergent capacity of AI systems to function as autonomous agents actively discovering problems, formulating hypotheses, and executing solutions through self-directed engagement with environments and tools. This fundamental capability marks the dawn of the Age of AI Agency, driven by a critical industry shift: the urgent need for AI systems that don't just think, but work. While current AI excels at reasoning and generating responses, industries demand autonomous agents that can execute tasks, operate tools, and drive real-world outcomes. As agentic intelligence becomes the defining characteristic separating cognitive systems from productive workers, efficiently cultivating machine autonomy becomes paramount. Current approaches assume that more data yields better agency, following traditional scaling laws from language modeling. We fundamentally challenge this paradigm. LIMI (Less Is More for Intelligent Agency) demonstrates that agency follows radically different development principles. Through strategic focus on collaborative software development and scientific research workflows, we show that sophisticated agentic intelligence can emerge from minimal but strategically curated demonstrations of autonomous behavior. Using only 78 carefully designed training samples, LIMI achieves 73.5% on comprehensive agency benchmarks, dramatically outperforming state-of-the-art models: Kimi-K2-Instruct (24.1%), DeepSeek-V3.1 (11.9%), Qwen3-235B-A22B-Instruct (27.5%), and GLM-4.5 (45.1%). Most strikingly, LIMI demonstrates 53.7% improvement over models trained on 10,000 samples-achieving superior agentic intelligence with 128 times fewer samples. Our findings establish the Agency Efficiency Principle: machine autonomy emerges not from data abundance but from strategic curation of high-quality agentic demonstrations.
IQBench: How "Smart'' Are Vision-Language Models? A Study with Human IQ Tests
Although large Vision-Language Models (VLMs) have demonstrated remarkable performance in a wide range of multimodal tasks, their true reasoning capabilities on human IQ tests remain underexplored. To advance research on the fluid intelligence of VLMs, we introduce **IQBench**, a new benchmark designed to evaluate VLMs on standardized visual IQ tests. We focus on evaluating the reasoning capabilities of VLMs, which we argue are more important than the accuracy of the final prediction. **Our benchmark is visually centric, minimizing the dependence on unnecessary textual content**, thus encouraging models to derive answers primarily from image-based information rather than learned textual knowledge. To this end, we manually collected and annotated 500 visual IQ questions to **prevent unintentional data leakage during training**. Unlike prior work that focuses primarily on the accuracy of the final answer, we evaluate the reasoning ability of the models by assessing their explanations and the patterns used to solve each problem, along with the accuracy of the final prediction and human evaluation. Our experiments show that there are substantial performance disparities between tasks, with models such as `o4-mini`, `gemini-2.5-flash`, and `claude-3.7-sonnet` achieving the highest average accuracies of 0.615, 0.578, and 0.548, respectively. However, all models struggle with 3D spatial and anagram reasoning tasks, highlighting significant limitations in current VLMs' general reasoning abilities. In terms of reasoning scores, `o4-mini`, `gemini-2.5-flash`, and `claude-3.7-sonnet` achieved top averages of 0.696, 0.586, and 0.516, respectively. These results highlight inconsistencies between the reasoning processes of the models and their final answers, emphasizing the importance of evaluating the accuracy of the reasoning in addition to the final predictions.
A Closer Look at the Intervention Procedure of Concept Bottleneck Models
Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts. Unlike the standard end-to-end models, CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end. While such intervenability provides a powerful avenue of control, many aspects of the intervention procedure remain rather unexplored. In this work, we develop various ways of selecting intervening concepts to improve the intervention effectiveness and conduct an array of in-depth analyses as to how they evolve under different circumstances. Specifically, we find that an informed intervention strategy can reduce the task error more than ten times compared to the current baseline under the same amount of intervention counts in realistic settings, and yet, this can vary quite significantly when taking into account different intervention granularity. We verify our findings through comprehensive evaluations, not only on the standard real datasets, but also on synthetic datasets that we generate based on a set of different causal graphs. We further discover some major pitfalls of the current practices which, without a proper addressing, raise concerns on reliability and fairness of the intervention procedure.
Efficient Reasoning for LLMs through Speculative Chain-of-Thought
Large reasoning language models such as OpenAI-o1 and Deepseek-R1 have recently attracted widespread attention due to their impressive task-solving abilities. However, the enormous model size and the generation of lengthy thought chains introduce significant reasoning costs and response latency. Existing methods for efficient reasoning mainly focus on reducing the number of model parameters or shortening the chain-of-thought length. In this paper, we introduce Speculative Chain-of-Thought (SCoT), which reduces reasoning latency from another perspective by accelerated average reasoning speed through large and small model collaboration. SCoT conducts thought-level drafting using a lightweight draft model. Then it selects the best CoT draft and corrects the error cases with the target model. The proposed thinking behavior alignment improves the efficiency of drafting and the draft selection strategy maintains the prediction accuracy for complex problems. Experimental results on GSM8K, MATH, GaoKao, CollegeMath and Olympiad datasets show that SCoT reduces reasoning latency by 48\%sim66\% for Deepseek-R1-Distill-Qwen-32B while achieving near-target-model-level performance. Our code is available at https://github.com/Jikai0Wang/Speculative_CoT.
Thought Cloning: Learning to Think while Acting by Imitating Human Thinking
Language is often considered a key aspect of human thinking, providing us with exceptional abilities to generalize, explore, plan, replan, and adapt to new situations. However, Reinforcement Learning (RL) agents are far from human-level performance in any of these abilities. We hypothesize one reason for such cognitive deficiencies is that they lack the benefits of thinking in language and that we can improve AI agents by training them to think like humans do. We introduce a novel Imitation Learning framework, Thought Cloning, where the idea is to not just clone the behaviors of human demonstrators, but also the thoughts humans have as they perform these behaviors. While we expect Thought Cloning to truly shine at scale on internet-sized datasets of humans thinking out loud while acting (e.g. online videos with transcripts), here we conduct experiments in a domain where the thinking and action data are synthetically generated. Results reveal that Thought Cloning learns much faster than Behavioral Cloning and its performance advantage grows the further out of distribution test tasks are, highlighting its ability to better handle novel situations. Thought Cloning also provides important benefits for AI Safety and Interpretability, and makes it easier to debug and improve AI. Because we can observe the agent's thoughts, we can (1) more easily diagnose why things are going wrong, making it easier to fix the problem, (2) steer the agent by correcting its thinking, or (3) prevent it from doing unsafe things it plans to do. Overall, by training agents how to think as well as behave, Thought Cloning creates safer, more powerful agents.