Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.
LSA64: An Argentinian Sign Language Dataset
Automatic sign language recognition is a research area that encompasses human-computer interaction, computer vision and machine learning. Robust automatic recognition of sign language could assist in the translation process and the integration of hearing-impaired people, as well as the teaching of sign language to the hearing population. Sign languages differ significantly in different countries and even regions, and their syntax and semantics are different as well from those of written languages. While the techniques for automatic sign language recognition are mostly the same for different languages, training a recognition system for a new language requires having an entire dataset for that language. This paper presents a dataset of 64 signs from the Argentinian Sign Language (LSA). The dataset, called LSA64, contains 3200 videos of 64 different LSA signs recorded by 10 subjects, and is a first step towards building a comprehensive research-level dataset of Argentinian signs, specifically tailored to sign language recognition or other machine learning tasks. The subjects that performed the signs wore colored gloves to ease the hand tracking and segmentation steps, allowing experiments on the dataset to focus specifically on the recognition of signs. We also present a pre-processed version of the dataset, from which we computed statistics of movement, position and handshape of the signs.
Design of Arabic Sign Language Recognition Model
Deaf people are using sign language for communication, and it is a combination of gestures, movements, postures, and facial expressions that correspond to alphabets and words in spoken languages. The proposed Arabic sign language recognition model helps deaf and hard hearing people communicate effectively with ordinary people. The recognition has four stages of converting the alphabet into letters as follows: Image Loading stage, which loads the images of Arabic sign language alphabets that were used later to train and test the model, a pre-processing stage which applies image processing techniques such as normalization, Image augmentation, resizing, and filtering to extract the features which are necessary to accomplish the recognition perfectly, a training stage which is achieved by deep learning techniques like CNN, a testing stage which demonstrates how effectively the model performs for images did not see it before, and the model was built and tested mainly using PyTorch library. The model is tested on ArASL2018, consisting of 54,000 images for 32 alphabet signs gathered from 40 signers, and the dataset has two sets: training dataset and testing dataset. We had to ensure that the system is reliable in terms of accuracy, time, and flexibility of use explained in detail in this report. Finally, the future work will be a model that converts Arabic sign language into Arabic text.
All You Need In Sign Language Production
Sign Language is the dominant form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing communities, building a robust system capable of translating the spoken language into sign language and vice versa is fundamental. To this end, sign language recognition and production are two necessary parts for making such a two-way system. Sign language recognition and production need to cope with some critical challenges. In this survey, we review recent advances in Sign Language Production (SLP) and related areas using deep learning. To have more realistic perspectives to sign language, we present an introduction to the Deaf culture, Deaf centers, psychological perspective of sign language, the main differences between spoken language and sign language. Furthermore, we present the fundamental components of a bi-directional sign language translation system, discussing the main challenges in this area. Also, the backbone architectures and methods in SLP are briefly introduced and the proposed taxonomy on SLP is presented. Finally, a general framework for SLP and performance evaluation, and also a discussion on the recent developments, advantages, and limitations in SLP, commenting on possible lines for future research are presented.
1DCNNTrans: BISINDO Sign Language Interpreters in Improving the Inclusiveness of Public Services
Indonesia ranks fourth globally in the number of deaf cases. Individuals with hearing impairments often find communication challenging, necessitating the use of sign language. However, there are limited public services that offer such inclusivity. On the other hand, advancements in artificial intelligence (AI) present promising solutions to overcome communication barriers faced by the deaf. This study aims to explore the application of AI in developing models for a simplified sign language translation app and dictionary, designed for integration into public service facilities, to facilitate communication for individuals with hearing impairments, thereby enhancing inclusivity in public services. The researchers compared the performance of LSTM and 1D CNN + Transformer (1DCNNTrans) models for sign language recognition. Through rigorous testing and validation, it was found that the LSTM model achieved an accuracy of 94.67%, while the 1DCNNTrans model achieved an accuracy of 96.12%. Model performance evaluation indicated that although the LSTM exhibited lower inference latency, it showed weaknesses in classifying classes with similar keypoints. In contrast, the 1DCNNTrans model demonstrated greater stability and higher F1 scores for classes with varying levels of complexity compared to the LSTM model. Both models showed excellent performance, exceeding 90% validation accuracy and demonstrating rapid classification of 50 sign language gestures.
SignLLM: Sign Languages Production Large Language Models
In this paper, we introduce the first comprehensive multilingual sign language dataset named Prompt2Sign, which builds from public data including American Sign Language (ASL) and seven others. Our dataset transforms a vast array of videos into a streamlined, model-friendly format, optimized for training with translation models like seq2seq and text2text. Building on this new dataset, we propose SignLLM, the first multilingual Sign Language Production (SLP) model, which includes two novel multilingual SLP modes that allow for the generation of sign language gestures from input text or prompt. Both of the modes can use a new loss and a module based on reinforcement learning, which accelerates the training by enhancing the model's capability to autonomously sample high-quality data. We present benchmark results of SignLLM, which demonstrate that our model achieves state-of-the-art performance on SLP tasks across eight sign languages.
Improving Continuous Sign Language Recognition with Cross-Lingual Signs
This work dedicates to continuous sign language recognition (CSLR), which is a weakly supervised task dealing with the recognition of continuous signs from videos, without any prior knowledge about the temporal boundaries between consecutive signs. Data scarcity heavily impedes the progress of CSLR. Existing approaches typically train CSLR models on a monolingual corpus, which is orders of magnitude smaller than that of speech recognition. In this work, we explore the feasibility of utilizing multilingual sign language corpora to facilitate monolingual CSLR. Our work is built upon the observation of cross-lingual signs, which originate from different sign languages but have similar visual signals (e.g., hand shape and motion). The underlying idea of our approach is to identify the cross-lingual signs in one sign language and properly leverage them as auxiliary training data to improve the recognition capability of another. To achieve the goal, we first build two sign language dictionaries containing isolated signs that appear in two datasets. Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model. At last, we train a CSLR model on the combination of the target data with original labels and the auxiliary data with mapped labels. Experimentally, our approach achieves state-of-the-art performance on two widely-used CSLR datasets: Phoenix-2014 and Phoenix-2014T.
CiCo: Domain-Aware Sign Language Retrieval via Cross-Lingual Contrastive Learning
This work focuses on sign language retrieval-a recently proposed task for sign language understanding. Sign language retrieval consists of two sub-tasks: text-to-sign-video (T2V) retrieval and sign-video-to-text (V2T) retrieval. Different from traditional video-text retrieval, sign language videos, not only contain visual signals but also carry abundant semantic meanings by themselves due to the fact that sign languages are also natural languages. Considering this character, we formulate sign language retrieval as a cross-lingual retrieval problem as well as a video-text retrieval task. Concretely, we take into account the linguistic properties of both sign languages and natural languages, and simultaneously identify the fine-grained cross-lingual (i.e., sign-to-word) mappings while contrasting the texts and the sign videos in a joint embedding space. This process is termed as cross-lingual contrastive learning. Another challenge is raised by the data scarcity issue-sign language datasets are orders of magnitude smaller in scale than that of speech recognition. We alleviate this issue by adopting a domain-agnostic sign encoder pre-trained on large-scale sign videos into the target domain via pseudo-labeling. Our framework, termed as domain-aware sign language retrieval via Cross-lingual Contrastive learning or CiCo for short, outperforms the pioneering method by large margins on various datasets, e.g., +22.4 T2V and +28.0 V2T R@1 improvements on How2Sign dataset, and +13.7 T2V and +17.1 V2T R@1 improvements on PHOENIX-2014T dataset. Code and models are available at: https://github.com/FangyunWei/SLRT.
SignCLIP: Connecting Text and Sign Language by Contrastive Learning
We present SignCLIP, which re-purposes CLIP (Contrastive Language-Image Pretraining) to project spoken language text and sign language videos, two classes of natural languages of distinct modalities, into the same space. SignCLIP is an efficient method of learning useful visual representations for sign language processing from large-scale, multilingual video-text pairs, without directly optimizing for a specific task or sign language which is often of limited size. We pretrain SignCLIP on Spreadthesign, a prominent sign language dictionary consisting of ~500 thousand video clips in up to 44 sign languages, and evaluate it with various downstream datasets. SignCLIP discerns in-domain signing with notable text-to-video/video-to-text retrieval accuracy. It also performs competitively for out-of-domain downstream tasks such as isolated sign language recognition upon essential few-shot prompting or fine-tuning. We analyze the latent space formed by the spoken language text and sign language poses, which provides additional linguistic insights. Our code and models are openly available.
SignDiff: Learning Diffusion Models for American Sign Language Production
The field of Sign Language Production (SLP) lacked a large-scale, pre-trained model based on deep learning for continuous American Sign Language (ASL) production in the past decade. This limitation hampers communication for all individuals with disabilities relying on ASL. To address this issue, we undertook the secondary development and utilization of How2Sign, one of the largest publicly available ASL datasets. Despite its significance, prior researchers in the field of sign language have not effectively employed this corpus due to the intricacies involved in American Sign Language Production (ASLP). To conduct large-scale ASLP, we propose SignDiff based on the latest work in related fields, which is a dual-condition diffusion pre-training model that can generate human sign language speakers from a skeleton pose. SignDiff has a novel Frame Reinforcement Network called FR-Net, similar to dense human pose estimation work, which enhances the correspondence between text lexical symbols and sign language dense pose frames reduce the occurrence of multiple fingers in the diffusion model. In addition, our ASLP method proposes two new improved modules and a new loss function to improve the accuracy and quality of sign language skeletal posture and enhance the ability of the model to train on large-scale data. We propose the first baseline for ASL production and report the scores of 17.19 and 12.85 on BLEU-4 on the How2Sign dev/test sets. We also evaluated our model on the previous mainstream dataset called PHOENIX14T, and the main experiments achieved the results of SOTA. In addition, our image quality far exceeds all previous results by 10 percentage points on the SSIM indicator. Finally, we conducted ablation studies and qualitative evaluations for discussion.
A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars
The objective of this paper is to develop a functional system for translating spoken languages into sign languages, referred to as Spoken2Sign translation. The Spoken2Sign task is orthogonal and complementary to traditional sign language to spoken language (Sign2Spoken) translation. To enable Spoken2Sign translation, we present a simple baseline consisting of three steps: 1) creating a gloss-video dictionary using existing Sign2Spoken benchmarks; 2) estimating a 3D sign for each sign video in the dictionary; 3) training a Spoken2Sign model, which is composed of a Text2Gloss translator, a sign connector, and a rendering module, with the aid of the yielded gloss-3D sign dictionary. The translation results are then displayed through a sign avatar. As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs. In addition to its capability of Spoken2Sign translation, we also demonstrate that two by-products of our approach-3D keypoint augmentation and multi-view understanding-can assist in keypoint-based sign language understanding. Code and models are available at https://github.com/FangyunWei/SLRT.
YouTube-SL-25: A Large-Scale, Open-Domain Multilingual Sign Language Parallel Corpus
Even for better-studied sign languages like American Sign Language (ASL), data is the bottleneck for machine learning research. The situation is worse yet for the many other sign languages used by Deaf/Hard of Hearing communities around the world. In this paper, we present YouTube-SL-25, a large-scale, open-domain multilingual corpus of sign language videos with seemingly well-aligned captions drawn from YouTube. With >3000 hours of videos across >25 sign languages, YouTube-SL-25 is a) >3x the size of YouTube-ASL, b) the largest parallel sign language dataset to date, and c) the first or largest parallel dataset for many of its component languages. We provide baselines for sign-to-text tasks using a unified multilingual multitask model based on T5 and report scores on benchmarks across 4 sign languages. The results demonstrate that multilingual transfer benefits both higher- and lower-resource sign languages within YouTube-SL-25.
iSign: A Benchmark for Indian Sign Language Processing
Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than 118K video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the workings of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks, and models via the following website: https://exploration-lab.github.io/iSign/
Reconsidering Sentence-Level Sign Language Translation
Historically, sign language machine translation has been posed as a sentence-level task: datasets consisting of continuous narratives are chopped up and presented to the model as isolated clips. In this work, we explore the limitations of this task framing. First, we survey a number of linguistic phenomena in sign languages that depend on discourse-level context. Then as a case study, we perform the first human baseline for sign language translation that actually substitutes a human into the machine learning task framing, rather than provide the human with the entire document as context. This human baseline -- for ASL to English translation on the How2Sign dataset -- shows that for 33% of sentences in our sample, our fluent Deaf signer annotators were only able to understand key parts of the clip in light of additional discourse-level context. These results underscore the importance of understanding and sanity checking examples when adapting machine learning to new domains.
Uni-Sign: Toward Unified Sign Language Understanding at Scale
Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose Uni-Sign, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, Uni-Sign unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that Uni-Sign achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at github.com/ZechengLi19/Uni-Sign.
Gloss-free Sign Language Translation: Improving from Visual-Language Pretraining
Sign Language Translation (SLT) is a challenging task due to its cross-domain nature, involving the translation of visual-gestural language to text. Many previous methods employ an intermediate representation, i.e., gloss sequences, to facilitate SLT, thus transforming it into a two-stage task of sign language recognition (SLR) followed by sign language translation (SLT). However, the scarcity of gloss-annotated sign language data, combined with the information bottleneck in the mid-level gloss representation, has hindered the further development of the SLT task. To address this challenge, we propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-VLP), which improves SLT by inheriting language-oriented prior knowledge from pre-trained models, without any gloss annotation assistance. Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training (CLIP) with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual Encoder and Text Decoder from the first stage. The seamless combination of these novel designs forms a robust sign language representation and significantly improves gloss-free sign language translation. In particular, we have achieved unprecedented improvements in terms of BLEU-4 score on the PHOENIX14T dataset (>+5) and the CSL-Daily dataset (>+3) compared to state-of-the-art gloss-free SLT methods. Furthermore, our approach also achieves competitive results on the PHOENIX14T dataset when compared with most of the gloss-based methods. Our code is available at https://github.com/zhoubenjia/GFSLT-VLP.
Ham2Pose: Animating Sign Language Notation into Pose Sequences
Translating spoken languages into Sign languages is necessary for open communication between the hearing and hearing-impaired communities. To achieve this goal, we propose the first method for animating a text written in HamNoSys, a lexical Sign language notation, into signed pose sequences. As HamNoSys is universal by design, our proposed method offers a generic solution invariant to the target Sign language. Our method gradually generates pose predictions using transformer encoders that create meaningful representations of the text and poses while considering their spatial and temporal information. We use weak supervision for the training process and show that our method succeeds in learning from partial and inaccurate data. Additionally, we offer a new distance measurement that considers missing keypoints, to measure the distance between pose sequences using DTW-MJE. We validate its correctness using AUTSL, a large-scale Sign language dataset, show that it measures the distance between pose sequences more accurately than existing measurements, and use it to assess the quality of our generated pose sequences. Code for the data pre-processing, the model, and the distance measurement is publicly released for future research.
Combining Efficient and Precise Sign Language Recognition: Good pose estimation library is all you need
Sign language recognition could significantly improve the user experience for d/Deaf people with the general consumer technology, such as IoT devices or videoconferencing. However, current sign language recognition architectures are usually computationally heavy and require robust GPU-equipped hardware to run in real-time. Some models aim for lower-end devices (such as smartphones) by minimizing their size and complexity, which leads to worse accuracy. This highly scrutinizes accurate in-the-wild applications. We build upon the SPOTER architecture, which belongs to the latter group of light methods, as it came close to the performance of large models employed for this task. By substituting its original third-party pose estimation module with the MediaPipe library, we achieve an overall state-of-the-art result on the WLASL100 dataset. Significantly, our method beats previous larger architectures while still being twice as computationally efficient and almost 11 times faster on inference when compared to a relevant benchmark. To demonstrate our method's combined efficiency and precision, we built an online demo that enables users to translate sign lemmas of American sign language in their browsers. This is the first publicly available online application demonstrating this task to the best of our knowledge.
Progressive Transformers for End-to-End Sign Language Production
The goal of automatic Sign Language Production (SLP) is to translate spoken language to a continuous stream of sign language video at a level comparable to a human translator. If this was achievable, then it would revolutionise Deaf hearing communications. Previous work on predominantly isolated SLP has shown the need for architectures that are better suited to the continuous domain of full sign sequences. In this paper, we propose Progressive Transformers, a novel architecture that can translate from discrete spoken language sentences to continuous 3D skeleton pose outputs representing sign language. We present two model configurations, an end-to-end network that produces sign direct from text and a stacked network that utilises a gloss intermediary. Our transformer network architecture introduces a counter that enables continuous sequence generation at training and inference. We also provide several data augmentation processes to overcome the problem of drift and improve the performance of SLP models. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging RWTH-PHOENIX-Weather-2014T(PHOENIX14T) dataset and setting baselines for future research.
Geo-Sign: Hyperbolic Contrastive Regularisation for Geometrically Aware Sign Language Translation
Recent progress in Sign Language Translation (SLT) has focussed primarily on improving the representational capacity of large language models to incorporate Sign Language features. This work explores an alternative direction: enhancing the geometric properties of skeletal representations themselves. We propose Geo-Sign, a method that leverages the properties of hyperbolic geometry to model the hierarchical structure inherent in sign language kinematics. By projecting skeletal features derived from Spatio-Temporal Graph Convolutional Networks (ST-GCNs) into the Poincar\'e ball model, we aim to create more discriminative embeddings, particularly for fine-grained motions like finger articulations. We introduce a hyperbolic projection layer, a weighted Fr\'echet mean aggregation scheme, and a geometric contrastive loss operating directly in hyperbolic space. These components are integrated into an end-to-end translation framework as a regularisation function, to enhance the representations within the language model. This work demonstrates the potential of hyperbolic geometry to improve skeletal representations for Sign Language Translation, improving on SOTA RGB methods while preserving privacy and improving computational efficiency. Code available here: https://github.com/ed-fish/geo-sign.
SignRep: Enhancing Self-Supervised Sign Representations
Sign language representation learning presents unique challenges due to the complex spatio-temporal nature of signs and the scarcity of labeled datasets. Existing methods often rely either on models pre-trained on general visual tasks, that lack sign-specific features, or use complex multimodal and multi-branch architectures. To bridge this gap, we introduce a scalable, self-supervised framework for sign representation learning. We leverage important inductive (sign) priors during the training of our RGB model. To do this, we leverage simple but important cues based on skeletons while pretraining a masked autoencoder. These sign specific priors alongside feature regularization and an adversarial style agnostic loss provide a powerful backbone. Notably, our model does not require skeletal keypoints during inference, avoiding the limitations of keypoint-based models during downstream tasks. When finetuned, we achieve state-of-the-art performance for sign recognition on the WLASL, ASL-Citizen and NMFs-CSL datasets, using a simpler architecture and with only a single-modality. Beyond recognition, our frozen model excels in sign dictionary retrieval and sign translation, surpassing standard MAE pretraining and skeletal-based representations in retrieval. It also reduces computational costs for training existing sign translation models while maintaining strong performance on Phoenix2014T, CSL-Daily and How2Sign.
Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
ISLTranslate: Dataset for Translating Indian Sign Language
Sign languages are the primary means of communication for many hard-of-hearing people worldwide. Recently, to bridge the communication gap between the hard-of-hearing community and the rest of the population, several sign language translation datasets have been proposed to enable the development of statistical sign language translation systems. However, there is a dearth of sign language resources for the Indian sign language. This resource paper introduces ISLTranslate, a translation dataset for continuous Indian Sign Language (ISL) consisting of 31k ISL-English sentence/phrase pairs. To the best of our knowledge, it is the largest translation dataset for continuous Indian Sign Language. We provide a detailed analysis of the dataset. To validate the performance of existing end-to-end Sign language to spoken language translation systems, we benchmark the created dataset with a transformer-based model for ISL translation.
Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison
Vision-based sign language recognition aims at helping deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those datasets cannot be applied in practice. In this paper, we introduce a new large-scale Word-Level American Sign Language (WLASL) video dataset, containing more than 2000 words performed by over 100 signers. This dataset will be made publicly available to the research community. To our knowledge, it is by far the largest public ASL dataset to facilitate word-level sign recognition research. Based on this new large-scale dataset, we are able to experiment with several deep learning methods for word-level sign recognition and evaluate their performances in large scale scenarios. Specifically we implement and compare two different models,i.e., (i) holistic visual appearance-based approach, and (ii) 2D human pose based approach. Both models are valuable baselines that will benefit the community for method benchmarking. Moreover, we also propose a novel pose-based temporal graph convolution networks (Pose-TGCN) that models spatial and temporal dependencies in human pose trajectories simultaneously, which has further boosted the performance of the pose-based method. Our results show that pose-based and appearance-based models achieve comparable performances up to 66% at top-10 accuracy on 2,000 words/glosses, demonstrating the validity and challenges of our dataset. Our dataset and baseline deep models are available at https://dxli94.github.io/WLASL/.
SignAvatars: A Large-scale 3D Sign Language Holistic Motion Dataset and Benchmark
We present SignAvatars, the first large-scale, multi-prompt 3D sign language (SL) motion dataset designed to bridge the communication gap for Deaf and hard-of-hearing individuals. While there has been an exponentially growing number of research regarding digital communication, the majority of existing communication technologies primarily cater to spoken or written languages, instead of SL, the essential communication method for Deaf and hard-of-hearing communities. Existing SL datasets, dictionaries, and sign language production (SLP) methods are typically limited to 2D as annotating 3D models and avatars for SL is usually an entirely manual and labor-intensive process conducted by SL experts, often resulting in unnatural avatars. In response to these challenges, we compile and curate the SignAvatars dataset, which comprises 70,000 videos from 153 signers, totaling 8.34 million frames, covering both isolated signs and continuous, co-articulated signs, with multiple prompts including HamNoSys, spoken language, and words. To yield 3D holistic annotations, including meshes and biomechanically-valid poses of body, hands, and face, as well as 2D and 3D keypoints, we introduce an automated annotation pipeline operating on our large corpus of SL videos. SignAvatars facilitates various tasks such as 3D sign language recognition (SLR) and the novel 3D SL production (SLP) from diverse inputs like text scripts, individual words, and HamNoSys notation. Hence, to evaluate the potential of SignAvatars, we further propose a unified benchmark of 3D SL holistic motion production. We believe that this work is a significant step forward towards bringing the digital world to the Deaf and hard-of-hearing communities as well as people interacting with them.
Is context all you need? Scaling Neural Sign Language Translation to Large Domains of Discourse
Sign Language Translation (SLT) is a challenging task that aims to generate spoken language sentences from sign language videos, both of which have different grammar and word/gloss order. From a Neural Machine Translation (NMT) perspective, the straightforward way of training translation models is to use sign language phrase-spoken language sentence pairs. However, human interpreters heavily rely on the context to understand the conveyed information, especially for sign language interpretation, where the vocabulary size may be significantly smaller than their spoken language equivalent. Taking direct inspiration from how humans translate, we propose a novel multi-modal transformer architecture that tackles the translation task in a context-aware manner, as a human would. We use the context from previous sequences and confident predictions to disambiguate weaker visual cues. To achieve this we use complementary transformer encoders, namely: (1) A Video Encoder, that captures the low-level video features at the frame-level, (2) A Spotting Encoder, that models the recognized sign glosses in the video, and (3) A Context Encoder, which captures the context of the preceding sign sequences. We combine the information coming from these encoders in a final transformer decoder to generate spoken language translations. We evaluate our approach on the recently published large-scale BOBSL dataset, which contains ~1.2M sequences, and on the SRF dataset, which was part of the WMT-SLT 2022 challenge. We report significant improvements on state-of-the-art translation performance using contextual information, nearly doubling the reported BLEU-4 scores of baseline approaches.
LLMs are Good Sign Language Translators
Sign Language Translation (SLT) is a challenging task that aims to translate sign videos into spoken language. Inspired by the strong translation capabilities of large language models (LLMs) that are trained on extensive multilingual text corpora, we aim to harness off-the-shelf LLMs to handle SLT. In this paper, we regularize the sign videos to embody linguistic characteristics of spoken language, and propose a novel SignLLM framework to transform sign videos into a language-like representation for improved readability by off-the-shelf LLMs. SignLLM comprises two key modules: (1) The Vector-Quantized Visual Sign module converts sign videos into a sequence of discrete character-level sign tokens, and (2) the Codebook Reconstruction and Alignment module converts these character-level tokens into word-level sign representations using an optimal transport formulation. A sign-text alignment loss further bridges the gap between sign and text tokens, enhancing semantic compatibility. We achieve state-of-the-art gloss-free results on two widely-used SLT benchmarks.
OLMD: Orientation-aware Long-term Motion Decoupling for Continuous Sign Language Recognition
The primary challenge in continuous sign language recognition (CSLR) mainly stems from the presence of multi-orientational and long-term motions. However, current research overlooks these crucial aspects, significantly impacting accuracy. To tackle these issues, we propose a novel CSLR framework: Orientation-aware Long-term Motion Decoupling (OLMD), which efficiently aggregates long-term motions and decouples multi-orientational signals into easily interpretable components. Specifically, our innovative Long-term Motion Aggregation (LMA) module filters out static redundancy while adaptively capturing abundant features of long-term motions. We further enhance orientation awareness by decoupling complex movements into horizontal and vertical components, allowing for motion purification in both orientations. Additionally, two coupling mechanisms are proposed: stage and cross-stage coupling, which together enrich multi-scale features and improve the generalization capabilities of the model. Experimentally, OLMD shows SOTA performance on three large-scale datasets: PHOENIX14, PHOENIX14-T, and CSL-Daily. Notably, we improved the word error rate (WER) on PHOENIX14 by an absolute 1.6% compared to the previous SOTA
GFG -- Gender-Fair Generation: A CALAMITA Challenge
Gender-fair language aims at promoting gender equality by using terms and expressions that include all identities and avoid reinforcing gender stereotypes. Implementing gender-fair strategies is particularly challenging in heavily gender-marked languages, such as Italian. To address this, the Gender-Fair Generation challenge intends to help shift toward gender-fair language in written communication. The challenge, designed to assess and monitor the recognition and generation of gender-fair language in both mono- and cross-lingual scenarios, includes three tasks: (1) the detection of gendered expressions in Italian sentences, (2) the reformulation of gendered expressions into gender-fair alternatives, and (3) the generation of gender-fair language in automatic translation from English to Italian. The challenge relies on three different annotated datasets: the GFL-it corpus, which contains Italian texts extracted from administrative documents provided by the University of Brescia; GeNTE, a bilingual test set for gender-neutral rewriting and translation built upon a subset of the Europarl dataset; and Neo-GATE, a bilingual test set designed to assess the use of non-binary neomorphemes in Italian for both fair formulation and translation tasks. Finally, each task is evaluated with specific metrics: average of F1-score obtained by means of BERTScore computed on each entry of the datasets for task 1, an accuracy measured with a gender-neutral classifier, and a coverage-weighted accuracy for tasks 2 and 3.
DiffSLT: Enhancing Diversity in Sign Language Translation via Diffusion Model
Sign language translation (SLT) is challenging, as it involves converting sign language videos into natural language. Previous studies have prioritized accuracy over diversity. However, diversity is crucial for handling lexical and syntactic ambiguities in machine translation, suggesting it could similarly benefit SLT. In this work, we propose DiffSLT, a novel gloss-free SLT framework that leverages a diffusion model, enabling diverse translations while preserving sign language semantics. DiffSLT transforms random noise into the target latent representation, conditioned on the visual features of input video. To enhance visual conditioning, we design Guidance Fusion Module, which fully utilizes the multi-level spatiotemporal information of the visual features. We also introduce DiffSLT-P, a DiffSLT variant that conditions on pseudo-glosses and visual features, providing key textual guidance and reducing the modality gap. As a result, DiffSLT and DiffSLT-P significantly improve diversity over previous gloss-free SLT methods and achieve state-of-the-art performance on two SLT datasets, thereby markedly improving translation quality.
SignBank+: Preparing a Multilingual Sign Language Dataset for Machine Translation Using Large Language Models
We introduce SignBank+, a clean version of the SignBank dataset, optimized for machine translation between spoken language text and SignWriting, a phonetic sign language writing system. In addition to previous work that employs complex factorization techniques to enable translation between text and SignWriting, we show that a traditional text-to-text translation approach performs equally effectively on the cleaned SignBank+ dataset. Our evaluation results indicate that models trained on SignBank+ surpass those on the original dataset, establishing a new benchmark for SignWriting-based sign language translation and providing an open resource for future research.
A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.