Papers
arxiv:2509.24952

De novo peptide sequencing rescoring and FDR estimation with Winnow

Published on Sep 29
Authors:
,
,
,
,
,
,
,
,

Abstract

Winnow is a model-agnostic framework that calibrates confidence scores and estimates FDR for de novo peptide sequencing, improving accuracy and reliability.

AI-generated summary

Machine learning has markedly advanced de novo peptide sequencing (DNS) for mass spectrometry-based proteomics. DNS tools offer a reliable way to identify peptides without relying on reference databases, extending proteomic analysis and unlocking applications into less-charted regions of the proteome. However, they still face a key limitation. DNS tools lack principled methods for estimating false discovery rates (FDR) and instead rely on model-specific confidence scores that are often miscalibrated. This limits trust in results, hinders cross-model comparisons and reduces validation success. Here we present Winnow, a model-agnostic framework for estimating FDR from calibrated DNS outputs. Winnow maps raw model scores to calibrated confidences using a neural network trained on peptide-spectrum match (PSM)-derived features. From these calibrated scores, Winnow computes PSM-specific error metrics and an experiment-wide FDR estimate using a novel decoy-free FDR estimator. It supports both zero-shot and dataset-specific calibration, enabling flexible application via direct inference, fine-tuning, or training a custom model. We demonstrate that, when applied to InstaNovo predictions, Winnow's calibrator improves recall at fixed FDR thresholds, and its FDR estimator tracks true error rates when benchmarked against reference proteomes and database search. Winnow ensures accurate FDR control across datasets, helping unlock the full potential of DNS.

Community

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2509.24952 in a Space README.md to link it from this page.

Collections including this paper 1