Fidelity Isn't Accuracy: When Linearly Decodable Functions Fail to Match the Ground Truth
Abstract
The linearity score quantifies the extent to which a neural network's behavior can be explained by a linear model, providing insights into model interpretability.
Neural networks excel as function approximators, but their complexity often obscures the types of functions they learn, making it difficult to explain their behavior. To address this, the linearity score lambda(f) is introduced, a simple and interpretable diagnostic that quantifies how well a regression network's output can be mimicked by a linear model. Defined as the R^2 value between the network's predictions and those of a trained linear surrogate, lambda(f) measures linear decodability: the extent to which the network's behavior aligns with a structurally simple model. This framework is evaluated on both synthetic and real-world datasets, using dataset-specific networks and surrogates. High lambda(f) scores reliably indicate alignment with the network's outputs; however, they do not guarantee accuracy with respect to the ground truth. These results highlight the risk of using surrogate fidelity as a proxy for model understanding, especially in high-stakes regression tasks.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper