Asking Again and Again: Exploring LLM Robustness to Repeated Questions
Abstract
Repeating questions in prompts does not significantly improve the accuracy of large language models across various datasets and settings.
This study investigates whether repeating questions within prompts influences the performance of large language models (LLMs). We hypothesize that reiterating a question within a single prompt might enhance the model's focus on key elements of the query. We evaluate five recent LLMs -- including GPT-4o-mini, DeepSeek-V3, and smaller open-source models -- on three reading comprehension datasets under different prompt settings, varying question repetition levels (1, 3, or 5 times per prompt). Our results demonstrate that question repetition can increase models' accuracy by up to 6%. However, across all models, settings, and datasets, we do not find the result statistically significant. These findings provide insights into prompt design and LLM behavior, suggesting that repetition alone does not significantly impact output quality.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper