---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1441905
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: Treponema caused disease or disorder
sentences:
- bejel
- tumor of ureter
- debrisoquine, ultrarapid metabolism of
- source_sentence: B cell (antibody) deficiencies
sentences:
- distal phalanx of digit IV
- well-differentiated fetal adenocarcinoma of the lung
- deficiency of humoral immunity
- source_sentence: Elevated AdoHcy concentration
sentences:
- gepulste Abgabe
- Elevated circulating S-adenosyl-L-homocysteine concentration
- Frequently cries for no reason
- source_sentence: Isoelectric focusing of serum transferrin consistent with CDG type
II
sentences:
- Amblyomma aureolatum
- squamous cell carcinoma of the bile duct
- Abnormal isoelectric focusing of serum transferrin, type 2 pattern
- source_sentence: Light-chain amyloidosis
sentences:
- partial deletion of the long arm of chromosome X
- Teneria teneriensis
- amyloidosis primary systemic
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: owl ontology eval
type: owl_ontology_eval
metrics:
- type: cosine_accuracy@1
value: 0.6302799165287473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8147801683816651
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8775275239260272
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9268187378570915
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6302799165287473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27634261591230724
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17979420018709072
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09566812981218968
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6216929313281044
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8081120625554675
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8723585426111152
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9241442997289582
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7796907170635903
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7342337217921898
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.734065731352359
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pankajrajdeo/bond-embed-v1-fp16")
# Run inference
sentences = [
'Light-chain amyloidosis',
'amyloidosis primary systemic',
'partial deletion of the long arm of chromosome X',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `owl_ontology_eval`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6303 |
| cosine_accuracy@3 | 0.8148 |
| cosine_accuracy@5 | 0.8775 |
| cosine_accuracy@10 | 0.9268 |
| cosine_precision@1 | 0.6303 |
| cosine_precision@3 | 0.2763 |
| cosine_precision@5 | 0.1798 |
| cosine_precision@10 | 0.0957 |
| cosine_recall@1 | 0.6217 |
| cosine_recall@3 | 0.8081 |
| cosine_recall@5 | 0.8724 |
| cosine_recall@10 | 0.9241 |
| **cosine_ndcg@10** | **0.7797** |
| cosine_mrr@10 | 0.7342 |
| cosine_map@100 | 0.7341 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 1,441,905 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
Mangshan horned toad
| Mangshan spadefoot toad
|
| Leuconotopicos borealis
| Picoides borealis
|
| Cylindrella teneriensis
| Teneria teneriensis
|
* Loss: [CachedMultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1024
- `learning_rate`: 1.5e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.05
- `bf16`: True
- `dataloader_num_workers`: 32
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
#### All Hyperparameters