Chris-Alexiuk commited on
Commit
d973526
·
verified ·
1 Parent(s): f149ca0

Add Acc Plot to Super MC

Browse files
Files changed (1) hide show
  1. README.md +2 -0
README.md CHANGED
@@ -18,6 +18,8 @@ tags:
18
 
19
  ## Model Overview
20
 
 
 
21
  Llama-3.3-Nemotron-Super-49B-v1 is a large language model (LLM) which is a derivative of [Meta Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) (AKA the *reference model*). It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling. The model supports a context length of 128K tokens.
22
 
23
  Llama-3.3-Nemotron-Super-49B-v1 is a model which offers a great tradeoff between model accuracy and efficiency. Efficiency (throughput) directly translates to savings. Using a novel Neural Architecture Search (NAS) approach, we greatly reduce the model’s memory footprint, enabling larger workloads, as well as fitting the model on a single GPU at high workloads (H200). This NAS approach enables the selection of a desired point in the accuracy-efficiency tradeoff. For more information on the NAS approach, please refer to [this paper](https://arxiv.org/abs/2411.19146).
 
18
 
19
  ## Model Overview
20
 
21
+ ![Accuracy Comparison Plot](./accuracy_plot.png)
22
+
23
  Llama-3.3-Nemotron-Super-49B-v1 is a large language model (LLM) which is a derivative of [Meta Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) (AKA the *reference model*). It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling. The model supports a context length of 128K tokens.
24
 
25
  Llama-3.3-Nemotron-Super-49B-v1 is a model which offers a great tradeoff between model accuracy and efficiency. Efficiency (throughput) directly translates to savings. Using a novel Neural Architecture Search (NAS) approach, we greatly reduce the model’s memory footprint, enabling larger workloads, as well as fitting the model on a single GPU at high workloads (H200). This NAS approach enables the selection of a desired point in the accuracy-efficiency tradeoff. For more information on the NAS approach, please refer to [this paper](https://arxiv.org/abs/2411.19146).