YongganFu commited on
Commit
6015b31
·
0 Parent(s):

Initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: nvidia-open-model-license
4
+ license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
5
+ ---
6
+
7
+ # Hymba-1.5B-Base
8
+
9
+ ## Model Overview
10
+
11
+ Hymba-1.5B-Base is a base text-to-text model that can be adopted for a variety of natural language generation tasks.
12
+
13
+ The model has hybrid architecture with Mamba and Attention heads running in parallel. Meta tokens, a set of learnable tokens prepended to every prompt, help improve the efficacy of the model. The model shares KV cache between 2 layers and between heads in a single layer. 90% of attention layers are sliding window attention.
14
+
15
+ This model is ready for commercial use.
16
+
17
+ **[Model Weights Coming Soon]**
18
+
19
+ **[Caution] During generation, the batch size needs to be 1. Our current implementation does not fully support padding of Meta tokens + SWA; this is a work in progress. Training and pre-filling support any batch size.**
20
+
21
+
22
+ **Model Developer:** NVIDIA
23
+
24
+ **Model Dates:** Hymba-1.5B-Base was trained between September 1, 2024 and November 10th, 2024.
25
+
26
+ **License:**
27
+ This model is released under the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf).
28
+
29
+
30
+ ## Model Architecture
31
+
32
+ Hymba-1.5B-Base has a model embedding size of 1600, 25 attention heads, and an MLP intermediate dimension of 5504, with 32 layers in total, 16 SSM states, 3 full attention layers, the rest are sliding window attention. Unlike the standard Transformer, each attention layer in Hymba has a hybrid combination of standard attention heads and Mamba heads in parallel. Additionally, it uses Grouped-Query Attention (GQA) and Rotary Position Embeddings (RoPE).
33
+
34
+ Features of this architecture:
35
+
36
+ - Fuse attention heads and SSM heads within the same layer, offering parallel and complementary processing of the same inputs.
37
+
38
+ <div align="center">
39
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B-Base/resolve/main/images/module.png" alt="Hymba Module" width="600">
40
+ </div>
41
+
42
+ - Introduce meta tokens that are prepended to the input sequences and interact with all subsequent tokens, thus storing important information and alleviating the burden of "forced-to-attend" in attention.
43
+
44
+ - Integrate with cross-layer KV sharing and global-local attention to further boost memory and computation efficiency.
45
+
46
+ <div align="center">
47
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B-Base/resolve/main/images/macro_arch.png" alt="Hymba Model" width="600">
48
+ </div>
49
+
50
+
51
+ ## Performance Highlights
52
+ - Hymba-1.5B-Base outperforms all sub-2B public models.
53
+
54
+ <div align="center">
55
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B-Base/resolve/main/images/performance1.png" alt="Compare with SoTA Small LMs" width="800">
56
+ </div>
57
+
58
+ <div align="center">
59
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B-Base/resolve/main/images/performance2.png" alt="Compare with SoTA Small LMs" width="800">
60
+ </div>
61
+
62
+
63
+ ## Model Usage
64
+
65
+
66
+ ### Step 1: Environment Setup
67
+
68
+ Since Hymba-1.5B-Instruct employs [FlexAttention](https://pytorch.org/blog/flexattention/), which relies on Pytorch2.5 and other related dependencies, please use the provided `setup.sh` (support CUDA 12.1/12.4) to install the related packages:
69
+
70
+ ```
71
+ wget --header="Authorization: Bearer YOUR_HF_TOKEN" https://huggingface.co/nvidia/Hymba-1.5B-Base/resolve/main/setup.sh
72
+ bash setup.sh
73
+ ```
74
+
75
+
76
+ ### Step 2: Chat with Hymba-1.5B-Base
77
+ After setting up the environment, you can use the following script to chat with our Model
78
+
79
+ ```
80
+ from transformers import LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer, AutoModel
81
+ import torch
82
+
83
+ # Load the tokenizer and model
84
+ repo_name = "nvidia/Hymba-1.5B-Base"
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
87
+ model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
88
+ model = model.cuda().to(torch.bfloat16)
89
+
90
+ # Chat with Hymba
91
+ prompt = input()
92
+ inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
93
+ outputs = model.generate(**inputs, max_length=64, do_sample=True, temperature=0.7, use_cache=True)
94
+ response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
95
+
96
+ print(f"Model response: {response}")
97
+
98
+ ```
99
+
100
+ ## Limitations
101
+ The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
102
+
103
+ ## Ethical Considerations
104
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
105
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
106
+
107
+
108
+ ## Citation
109
+ ```
110
+ @article{hymba2024,
111
+ title={A Hybrid-head Architecture for Small Language Models},
112
+ author={Xin Dong and Yonggan Fu and Shizhe Diao and Wonmin Byeon and Zijia Chen and Ameya Sunil Mahabaleshwarkar and Shih-Yang Liu and Matthijs Van Keirsbilck and Min-Hung Chen and Yoshi Suhara and Yingyan Celine Lin and Jan Kautz and Pavlo Molchanov},
113
+ journal={arXiv preprint arXiv:xxxx},
114
+ year={2024},
115
+ url={https://arxiv.org/abs/xxxx},
116
+ }
117
+ ```
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HymbaForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "attn_hidden_size": -1,
7
+ "attn_implementation": "flex",
8
+ "attn_implementation_new": "flex",
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_hymba.HymbaConfig",
11
+ "AutoModelForCausalLM": "modeling_hymba.HymbaForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "calc_logits_for_entire_prompt": false,
15
+ "conv_dim": {
16
+ "0": 3200,
17
+ "1": 3200,
18
+ "2": 3200,
19
+ "3": 3200,
20
+ "4": 3200,
21
+ "5": 3200,
22
+ "6": 3200,
23
+ "7": 3200,
24
+ "8": 3200,
25
+ "9": 3200,
26
+ "10": 3200,
27
+ "11": 3200,
28
+ "12": 3200,
29
+ "13": 3200,
30
+ "14": 3200,
31
+ "15": 3200,
32
+ "16": 3200,
33
+ "17": 3200,
34
+ "18": 3200,
35
+ "19": 3200,
36
+ "20": 3200,
37
+ "21": 3200,
38
+ "22": 3200,
39
+ "23": 3200,
40
+ "24": 3200,
41
+ "25": 3200,
42
+ "26": 3200,
43
+ "27": 3200,
44
+ "28": 3200,
45
+ "29": 3200,
46
+ "30": 3200,
47
+ "31": 3200
48
+ },
49
+ "eos_token_id": 2,
50
+ "global_attn_idx": [
51
+ 0,
52
+ 15,
53
+ 31
54
+ ],
55
+ "hidden_act": "silu",
56
+ "hidden_size": 1600,
57
+ "initializer_range": 0.02,
58
+ "intermediate_size": 5504,
59
+ "kq_head_dim": -1,
60
+ "kq_norm": "none",
61
+ "kv_reuse_every_i_layer": -1,
62
+ "kv_reuse_group": [
63
+ [
64
+ 1,
65
+ 2
66
+ ],
67
+ [
68
+ 3,
69
+ 4
70
+ ],
71
+ [
72
+ 5,
73
+ 6
74
+ ],
75
+ [
76
+ 7,
77
+ 8
78
+ ],
79
+ [
80
+ 9,
81
+ 10
82
+ ],
83
+ [
84
+ 11,
85
+ 12
86
+ ],
87
+ [
88
+ 13,
89
+ 14
90
+ ],
91
+ [
92
+ 16,
93
+ 17,
94
+ 18
95
+ ],
96
+ [
97
+ 19,
98
+ 20
99
+ ],
100
+ [
101
+ 21,
102
+ 22
103
+ ],
104
+ [
105
+ 23,
106
+ 24
107
+ ],
108
+ [
109
+ 25,
110
+ 26
111
+ ],
112
+ [
113
+ 27,
114
+ 28
115
+ ],
116
+ [
117
+ 29,
118
+ 30
119
+ ]
120
+ ],
121
+ "kv_weight_reuse": false,
122
+ "layer_type": [
123
+ "h",
124
+ "h",
125
+ "h",
126
+ "h",
127
+ "h",
128
+ "h",
129
+ "h",
130
+ "h",
131
+ "h",
132
+ "h",
133
+ "h",
134
+ "h",
135
+ "h",
136
+ "h",
137
+ "h",
138
+ "h",
139
+ "h",
140
+ "h",
141
+ "h",
142
+ "h",
143
+ "h",
144
+ "h",
145
+ "h",
146
+ "h",
147
+ "h",
148
+ "h",
149
+ "h",
150
+ "h",
151
+ "h",
152
+ "h",
153
+ "h",
154
+ "h"
155
+ ],
156
+ "mamba_conv_bias": true,
157
+ "mamba_d_conv": 4,
158
+ "mamba_d_state": 16,
159
+ "mamba_dt_rank": 100,
160
+ "mamba_expand": 2,
161
+ "mamba_inner_layernorms": true,
162
+ "mamba_proj_bias": false,
163
+ "max_position_embeddings": 8192,
164
+ "memory_tokens_interspersed_every": 0,
165
+ "mlp_hidden_act": "silu",
166
+ "model_type": "hymba",
167
+ "num_attention_heads": 25,
168
+ "num_experts": 1,
169
+ "num_experts_per_tok": 1,
170
+ "num_hidden_layers": 32,
171
+ "num_key_value_heads": 5,
172
+ "num_mamba": 1,
173
+ "num_memory_tokens": 128,
174
+ "orig_max_position_embeddings": 2048,
175
+ "output_router_logits": false,
176
+ "pad_token_id": 0,
177
+ "rms_norm_eps": 1e-06,
178
+ "rope": true,
179
+ "rope_theta": 10000.0,
180
+ "rope_type": "ntk",
181
+ "router_aux_loss_coef": 0.001,
182
+ "seq_length": 8192,
183
+ "sliding_window": 1024,
184
+ "tie_word_embeddings": true,
185
+ "torch_dtype": "bfloat16",
186
+ "transformers_version": "4.44.0",
187
+ "use_cache": false,
188
+ "use_mamba_kernels": true,
189
+ "v_head_dim": 128,
190
+ "vocab_size": 32001
191
+ }
configuration_hymba.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+
5
+ class HymbaConfig(PretrainedConfig):
6
+
7
+ model_type = "hymba"
8
+ keys_to_ignore_at_inference = ["past_key_values"]
9
+
10
+ def __init__(
11
+ self,
12
+ vocab_size=65536,
13
+ tie_word_embeddings=False,
14
+ hidden_size=4096,
15
+ intermediate_size=14336,
16
+ num_hidden_layers=32,
17
+ num_attention_heads=32,
18
+ num_key_value_heads=8,
19
+ hidden_act="silu",
20
+ initializer_range=0.02,
21
+ rms_norm_eps=1e-6,
22
+ use_cache=True,
23
+ calc_logits_for_entire_prompt=False,
24
+ output_router_logits=False,
25
+ router_aux_loss_coef=0.001,
26
+ pad_token_id=0,
27
+ bos_token_id=1,
28
+ eos_token_id=2,
29
+ sliding_window=None,
30
+ max_position_embeddings=262144,
31
+ orig_max_position_embeddings=None,
32
+ attention_dropout=0.0,
33
+ num_experts_per_tok=2,
34
+ num_experts=16,
35
+ use_mamba_kernels=True,
36
+ mamba_d_state=16,
37
+ mamba_d_conv=4,
38
+ mamba_expand=2,
39
+ mamba_dt_rank="auto",
40
+ mamba_conv_bias=True,
41
+ mamba_proj_bias=False,
42
+ mamba_inner_layernorms=True,
43
+ kv_reuse_every_i_layer=-1,
44
+ kv_reuse_group=None,
45
+ kv_weight_reuse=False,
46
+ global_attn_idx=None,
47
+ num_mamba=1,
48
+ attn_implementation_new='sdpa',
49
+ rope_type=None,
50
+ **kwargs,
51
+ ):
52
+ self.vocab_size = vocab_size
53
+ self.tie_word_embeddings = tie_word_embeddings
54
+ self.hidden_size = hidden_size
55
+ self.intermediate_size = intermediate_size
56
+ self.num_hidden_layers = num_hidden_layers
57
+ self.num_attention_heads = num_attention_heads
58
+ self.sliding_window = sliding_window
59
+ self.max_position_embeddings = max_position_embeddings
60
+ self.orig_max_position_embeddings = orig_max_position_embeddings
61
+ self.attention_dropout = attention_dropout
62
+
63
+ if num_key_value_heads is None:
64
+ num_key_value_heads = num_attention_heads
65
+
66
+ self.num_key_value_heads = num_key_value_heads
67
+ self.hidden_act = hidden_act
68
+ self.initializer_range = initializer_range
69
+ self.rms_norm_eps = rms_norm_eps
70
+
71
+ self.use_cache = use_cache
72
+ self.calc_logits_for_entire_prompt = calc_logits_for_entire_prompt
73
+ self.output_router_logits = output_router_logits
74
+ self.router_aux_loss_coef = router_aux_loss_coef
75
+
76
+ self.num_experts_per_tok = num_experts_per_tok
77
+ self.num_experts = num_experts
78
+
79
+ self.use_mamba_kernels = use_mamba_kernels
80
+ self.mamba_d_state = mamba_d_state
81
+ self.mamba_d_conv = mamba_d_conv
82
+ self.mamba_expand = mamba_expand
83
+ self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
84
+ self.mamba_conv_bias = mamba_conv_bias
85
+ self.mamba_proj_bias = mamba_proj_bias
86
+ self.mamba_inner_layernorms = mamba_inner_layernorms
87
+
88
+ self.attn_hidden_size = kwargs.pop("attn_hidden_size", -1)
89
+ self.kq_head_dim = kwargs.pop("kq_head_dim", -1)
90
+ self.v_head_dim = kwargs.pop("v_head_dim", -1)
91
+ self.kq_norm = kwargs.pop("kq_norm", None)
92
+ self.rope = kwargs.pop("rope", False)
93
+ self.rope_theta = kwargs.pop("rope_theta", 10000.0)
94
+ self.num_memory_tokens = kwargs.pop("num_memory_tokens", 0)
95
+ self.memory_tokens_interspersed_every = kwargs.pop("memory_tokens_interspersed_every", 0)
96
+
97
+ self.kv_reuse_every_i_layer = kv_reuse_every_i_layer
98
+ self.kv_reuse_group = kv_reuse_group
99
+ self.kv_weight_reuse = kv_weight_reuse
100
+
101
+ self.global_attn_idx = global_attn_idx
102
+
103
+ self.num_mamba = num_mamba
104
+
105
+ self.attn_implementation_new = attn_implementation_new
106
+
107
+ self.rope_type = rope_type
108
+
109
+
110
+ super().__init__(
111
+ pad_token_id=pad_token_id,
112
+ bos_token_id=bos_token_id,
113
+ eos_token_id=eos_token_id,
114
+ tie_word_embeddings=tie_word_embeddings,
115
+ **kwargs,
116
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.44.0",
7
+ "use_cache": false
8
+ }
images/macro_arch.png ADDED
images/module.png ADDED
images/performance1.png ADDED
images/performance2.png ADDED
modeling_hymba.py ADDED
The diff for this file is too large to render. See raw diff
 
setup.sh ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Prompt user to specify CUDA version
4
+ read -p "Enter CUDA version (12.1 or 12.4): " cuda_version
5
+
6
+ # Verify CUDA version input
7
+ if [[ "$cuda_version" != "12.1" && "$cuda_version" != "12.4" ]]; then
8
+ echo "Invalid CUDA version specified. Please choose either 12.1 or 12.4."
9
+ exit 1
10
+ fi
11
+
12
+ # Install PyTorch with the specified CUDA version
13
+ conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=$cuda_version -c pytorch -c nvidia
14
+
15
+ # Install other packages
16
+ pip install --upgrade transformers
17
+ pip install tiktoken
18
+ pip install sentencepiece
19
+ pip install protobuf
20
+ pip install ninja einops triton packaging
21
+
22
+ # Clone and install Mamba
23
+ git clone https://github.com/state-spaces/mamba.git
24
+ cd mamba
25
+ pip install -e .
26
+ cd ..
27
+
28
+ # Clone and install causal-conv1d with specified CUDA version
29
+ git clone https://github.com/Dao-AILab/causal-conv1d.git
30
+ cd causal-conv1d
31
+ export CUDA_HOME=/usr/local/cuda-$cuda_version
32
+ TORCH_CUDA_ARCH_LIST="7.0;7.5;8.0;8.6;8.9;9.0" python setup.py install
33
+ cd ..
34
+
35
+ # Clone and install attention-gym
36
+ git clone https://github.com/pytorch-labs/attention-gym.git
37
+ cd attention-gym
38
+ pip install .
39
+ cd ..
40
+
41
+ # Install Flash Attention
42
+ pip install flash_attn
43
+
44
+ echo "Installation completed with CUDA $cuda_version."
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ }
38
+ },
39
+ "bos_token": "<s>",
40
+ "chat_template": "{{'<extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'\n' + message['content'].strip()}}{% if tools or contexts %}{{'\n'}}{% endif %}{% endif %}{% endfor %}{% if tools %}{% for tool in tools %}{{ '\n<tool> ' + tool|tojson + ' </tool>' }}{% endfor %}{% endif %}{% if contexts %}{% if tools %}{{'\n'}}{% endif %}{% for context in contexts %}{{ '\n<context> ' + context.strip() + ' </context>' }}{% endfor %}{% endif %}{{'\n\n'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<extra_id_1>User\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'assistant' %}{{ '<extra_id_1>Assistant\n' + message['content'].strip() + '\n' }}{% elif message['role'] == 'tool' %}{{ '<extra_id_1>Tool\n' + message['content'].strip() + '\n' }}{% endif %}{% endfor %}{%- if add_generation_prompt %}{{'<extra_id_1>Assistant\n'}}{%- endif %}",
41
+ "clean_up_tokenization_spaces": false,
42
+ "eos_token": "</s>",
43
+ "legacy": true,
44
+ "model_max_length": 1000000000000000019884624838656,
45
+ "pad_token": "[PAD]",
46
+ "padding_side": "left",
47
+ "sp_model_kwargs": {},
48
+ "spaces_between_special_tokens": false,
49
+ "tokenizer_class": "LlamaTokenizer",
50
+ "unk_token": "<unk>",
51
+ "use_default_system_prompt": false
52
+ }