zpn Cebtenzzre commited on
Commit
a03db67
·
verified ·
1 Parent(s): 86089c7

Use v1.5 model in examples (#49)

Browse files

- Use v1.5 model in examples (0760fbacbf3d000f3ddf79d9899336380aa00778)


Co-authored-by: Cebtenzzre <Cebtenzzre@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -2630,7 +2630,7 @@ This prefix is used for embedding texts as documents, for example as documents f
2630
  ```python
2631
  from sentence_transformers import SentenceTransformer
2632
 
2633
- model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
2634
  sentences = ['search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten']
2635
  embeddings = model.encode(sentences)
2636
  print(embeddings)
@@ -2645,7 +2645,7 @@ This prefix is used for embedding texts as questions that documents from a datas
2645
  ```python
2646
  from sentence_transformers import SentenceTransformer
2647
 
2648
- model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
2649
  sentences = ['search_query: Who is Laurens van Der Maaten?']
2650
  embeddings = model.encode(sentences)
2651
  print(embeddings)
@@ -2660,7 +2660,7 @@ This prefix is used for embedding texts in order to group them into clusters, di
2660
  ```python
2661
  from sentence_transformers import SentenceTransformer
2662
 
2663
- model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
2664
  sentences = ['clustering: the quick brown fox']
2665
  embeddings = model.encode(sentences)
2666
  print(embeddings)
@@ -2675,7 +2675,7 @@ This prefix is used for embedding texts into vectors that will be used as featur
2675
  ```python
2676
  from sentence_transformers import SentenceTransformer
2677
 
2678
- model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
2679
  sentences = ['classification: the quick brown fox']
2680
  embeddings = model.encode(sentences)
2681
  print(embeddings)
@@ -2737,8 +2737,8 @@ The model natively supports scaling of the sequence length past 2048 tokens. To
2737
  + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
2738
 
2739
 
2740
- - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
2741
- + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
2742
  ```
2743
 
2744
  ### Transformers.js
 
2630
  ```python
2631
  from sentence_transformers import SentenceTransformer
2632
 
2633
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
2634
  sentences = ['search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten']
2635
  embeddings = model.encode(sentences)
2636
  print(embeddings)
 
2645
  ```python
2646
  from sentence_transformers import SentenceTransformer
2647
 
2648
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
2649
  sentences = ['search_query: Who is Laurens van Der Maaten?']
2650
  embeddings = model.encode(sentences)
2651
  print(embeddings)
 
2660
  ```python
2661
  from sentence_transformers import SentenceTransformer
2662
 
2663
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
2664
  sentences = ['clustering: the quick brown fox']
2665
  embeddings = model.encode(sentences)
2666
  print(embeddings)
 
2675
  ```python
2676
  from sentence_transformers import SentenceTransformer
2677
 
2678
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
2679
  sentences = ['classification: the quick brown fox']
2680
  embeddings = model.encode(sentences)
2681
  print(embeddings)
 
2737
  + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
2738
 
2739
 
2740
+ - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
2741
+ + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True, rotary_scaling_factor=2)
2742
  ```
2743
 
2744
  ### Transformers.js