--- base_model: - Qwen/Qwen2.5-VL-7B-Instruct library_name: peft datasets: - nomic-ai/colpali-queries-mined-20250321-by-source language: - en - it - fr - de - es pipeline_tag: visual-document-retrieval tags: - vidore - colpali - multimodal_embedding - multilingual_embedding - Text-to-Visual Document (T→VD) retrieval license: apache-2.0 --- # Nomic Embed Multimodal 7B: State-of-the-Art Visual Document Retrieval `nomic-embed-multimodal-7b` is a dense state-of-the-art multimodal embedding model that excels at visual document retrieval tasks: - **High Performance**: Achieves 58.8 NDCG@5 on Vidore-v2, outperforming all other dense multimodal embedding models. - **Unified Text-Image Encoding**: Directly encodes interleaved text and images without complex preprocessing - **Advanced Architecture**: 7B parameter multimodal embedding model - **Fully Open-Source**: Model weights, training data, and code available ## Performance | Model | Avg. | ESG Restaurant Human | Econ Macro Multi. | AXA Multi. | MIT Bio | ESG Restaurant Synth. | ESG Restaurant Synth. Multi. | MIT Bio Multi. | AXA | Econ. Macro | |-------|------|----------------------|-------------------|------------|---------|----------------------|----------------------------|---------------|-----|------------| | ColNomic Embed Multimodal 7B | 62.7 | 73.9 | 54.7 | 61.3 | 66.1 | 57.3 | 56.7 | 64.2 | 68.3 | 61.6 | | ColNomic Embed Multimodal 3B | 61.2 | 65.8 | 55.4 | 61.0 | 63.5 | 56.6 | 57.2 | 62.5 | 68.8 | 60.2 | | T-Systems ColQwen2.5-3B | 59.9 | 72.1 | 51.2 | 60.0 | 65.3 | 51.7 | 53.3 | 61.7 | 69.3 | 54.8 | | **Nomic Embed Multimodal 7B** | 59.7 | 65.7 | 57.7 | 59.3 | 64.0 | 49.2 | 51.9 | 61.2 | 66.3 | 63.1 | | GME Qwen2 7B | 59.0 | 65.8 | 56.2 | 55.4 | 64.0 | 54.3 | 56.7 | 55.1 | 60.7 | 62.9 | | Nomic Embed Multimodal 3B | 58.8 | 59.8 | 57.5 | 58.8 | 62.5 | 49.4 | 49.4 | 58.6 | 69.6 | 63.5 | | Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 | | Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 | ## Getting Started To use `nomic-embed-multimodal-7b`, please install `colpali` from source ```bash pip install git+https://github.com/nomic-ai/colpali.git ``` ```python import torch from PIL import Image from transformers.utils.import_utils import is_flash_attn_2_available from colpali_engine.models import BiQwen2_5, BiQwen2_5_Processor model_name = "nomic-ai/nomic-embed-multimodal-7b" model = BiQwen2_5.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, ).eval() processor = BiQwen2_5_Processor.from_pretrained(model_name) # Your inputs images = [ Image.new("RGB", (128, 128), color="white"), Image.new("RGB", (64, 32), color="black"), ] queries = [ "What is the organizational structure for our R&D department?", "Can you provide a breakdown of last year’s financial performance?", ] # Process the inputs batch_images = processor.process_images(images).to(model.device) batch_queries = processor.process_queries(queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images) query_embeddings = model(**batch_queries) scores = processor.score(list(torch.unbind(query_embeddings)), list(torch.unbind(image_embeddings))) ``` ## Model Architecture - **Total Parameters**: 7B - **Training Approach**: Fine-tuned from Qwen2.5-VL 7B Instruct - **Architecture Type**: Vision-Language Model with unified text and image input processing - **Key Innovations**: - Same-source sampling to create harder in-batch negatives - Hard negative mining with positive-aware techniques ## Integration with RAG Workflows Nomic Embed Multimodal 7B seamlessly integrates with Retrieval Augmented Generation (RAG) workflows: 1. **Direct Document Embedding**: Skip OCR and complex processing by directly embedding document page images 2. **Faster Processing**: Eliminate preprocessing steps for quicker indexing 3. **More Complete Information**: Capture both textual and visual cues in a single embedding 4. **Simple Implementation**: Use the same API for both text and images ## Recommended Use Cases The model excels at handling real-world document retrieval scenarios that challenge traditional text-only systems: - **Research Papers**: Capture equations, diagrams, and tables - **Technical Documentation**: Encode code blocks, flowcharts, and screenshots - **Product Catalogs**: Represent images, specifications, and pricing tables - **Financial Reports**: Embed charts, graphs, and numerical data - **Visually Rich Content**: Where layout and visual information are important - **Multilingual Documents**: Where visual context provides important cues ## Training Details Nomic Embed Multimodal 7B was developed through several key innovations: 1. **Sampling From the Same Source**: Forcing sampling from the same dataset source creates harder in-batch negatives, preventing the model from learning dataset artifacts. 2. **Hard Negative Mining**: Using an initial model to retrieve top-k nearest neighbors for each query, then incorporating these hard negatives into training. 3. **Positive-aware Hard Negative Mining**: Reducing false negatives using techniques introduced in NV-Retriever. ## Limitations - Performance may vary when processing documents with unconventional layouts or unusual visual elements - While it handles multiple languages, performance is strongest on English content - Processing very large or complex documents may require dividing them into smaller chunks - Performance on documents with handwriting or heavily stylized fonts may be reduced ## Join the Nomic Community - Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed) - Website: [https://nomic.ai](https://nomic.ai) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) ## Citation If you find this model useful in your research or applications, please consider citing: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } @misc{ma2024unifyingmultimodalretrievaldocument, title={Unifying Multimodal Retrieval via Document Screenshot Embedding}, author={Xueguang Ma and Sheng-Chieh Lin and Minghan Li and Wenhu Chen and Jimmy Lin}, year={2024}, eprint={2406.11251}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2406.11251}, } @misc{nomicembedmultimodal2025, title={Nomic Embed Multimodal: Interleaved Text, Image, and Screenshots for Visual Document Retrieval}, author={Nomic Team}, year={2025}, publisher={Nomic AI}, url={https://nomic-ai/blog/posts/nomic-embed-multimodal}, } ```