--- license: apache-2.0 language: - zh - en tags: - qwen - qwen3 - unsloth - qiming - qiming-holos - bagua - decision-making - strategic-analysis - cognitive-architecture - chat - lora - philosophy-driven-ai - mlx pipeline_tag: text-generation library_name: mlx base_model: aifeifei798/QiMing-Holos-Plus-4B --- # QiMing-Holos-Plus-4B-bf16-mlx Recommended quant: ✨ qx6-hi: Why This Model Wins ```bash Strength Impact PiQA (0.716) Highest accuracy (best for reasoning QA)** WinG. (0.618) Winning consistency for document tasks Avg. metric points (528) +0.5% vs BF16’s 523 Minimal arc_challenge drag Flexible for varied inference loads ``` Visual Scorecard ```bash WinG. Leader qx6-hi (0.618) PiQA Leader qx6-hi (0.716) Avg. Champion qx6-hi (~528 avg metric pts) ``` This refined analysis — powered by new benchmark evidence — positions qx6-hi as the most battle-tested quant model for your end-to-end reasoning stack. Deploy confidently with this updated validation! 🚀 This model [QiMing-Holos-Plus-4B-bf16-mlx](https://huggingface.co/QiMing-Holos-Plus-4B-bf16-mlx) was converted to MLX format from [aifeifei798/QiMing-Holos-Plus-4B](https://huggingface.co/aifeifei798/QiMing-Holos-Plus-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("QiMing-Holos-Plus-4B-bf16-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```