nickfuryavg commited on
Commit
74cb508
·
verified ·
1 Parent(s): a6f7a7d

Upload model_ts.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model_ts.py +106 -0
model_ts.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
2
+ import torch
3
+ import os
4
+ import json
5
+ from huggingface_hub import snapshot_download
6
+
7
+ class IndicASRConfig(PretrainedConfig):
8
+ model_type = "iasr"
9
+
10
+ def __init__(self, ts_folder: str = "path", BLANK_ID: int = 256, RNNT_MAX_SYMBOLS: int = 10,
11
+ PRED_RNN_LAYERS: int = 2, PRED_RNN_HIDDEN_DIM: int = 640, SOS: int = 256, **kwargs):
12
+ super().__init__(**kwargs)
13
+ self.ts_folder = ts_folder
14
+ self.BLANK_ID = BLANK_ID
15
+ self.RNNT_MAX_SYMBOLS = RNNT_MAX_SYMBOLS
16
+ self.PRED_RNN_LAYERS = PRED_RNN_LAYERS
17
+ self.PRED_RNN_HIDDEN_DIM = PRED_RNN_HIDDEN_DIM
18
+ self.SOS = SOS
19
+
20
+ class IndicASRModel(PreTrainedModel):
21
+ config_class = IndicASRConfig
22
+
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+
26
+ # Load model components
27
+ self.models = {}
28
+ component_names = ['preprocessor', 'encoder', 'ctc_decoder', 'rnnt_decoder', 'joint_enc', 'joint_pred', 'joint_pre_net']
29
+ component_names += [f'joint_post_net_{lang}' for lang in ['as', 'bn', 'brx', 'doi', 'gu', 'hi', 'kn', 'kok', 'ks', 'mai', 'ml', 'mni', 'mr', 'ne', 'or', 'pa', 'sa', 'sat', 'sd', 'ta', 'te', 'ur']]
30
+
31
+ for name in component_names:
32
+ component_path = os.path.join(config.ts_folder, 'assets', f'{name}.ts')
33
+ if os.path.exists(component_path):
34
+ self.models[name] = torch.jit.load(component_path, map_location=torch.device(self.config.device))
35
+ else:
36
+ self.models[name] = None
37
+ print(f'Warning: {component_path} not found')
38
+
39
+ # Load vocab and language masks
40
+ with open(os.path.join(config.ts_folder, 'assets', 'vocab.json')) as f:
41
+ self.vocab = json.load(f)
42
+
43
+ with open(os.path.join(config.ts_folder, 'assets', 'language_masks.json')) as f:
44
+ self.language_masks = json.load(f)
45
+
46
+ def forward(self, wav, lang, decoding='ctc'):
47
+ encoder_outputs, encoded_lengths = self.encode(wav)
48
+ if decoding == 'ctc':
49
+ return self._ctc_decode(encoder_outputs, encoded_lengths, lang)
50
+ if decoding == 'rnnt':
51
+ return self._rnnt_decode(encoder_outputs, encoded_lengths, lang)
52
+
53
+ def encode(self, wav):
54
+ audio_signal, length = self.models['preprocessor'](wav.to(torch.device(self.config.device)), torch.tensor([wav.shape[-1]]).to(torch.device(self.config.device)))
55
+ outputs, encoded_lengths = self.models['encoder'](audio_signal, length)
56
+ return outputs, encoded_lengths
57
+
58
+ def _ctc_decode(self, encoder_outputs, encoded_lengths, lang):
59
+ logprobs = self.models['ctc_decoder'](encoder_outputs)
60
+ logprobs = logprobs[:, :, self.language_masks[lang]].log_softmax(dim=-1)
61
+ indices = torch.argmax(logprobs[0], dim=-1)
62
+ collapsed_indices = torch.unique_consecutive(indices, dim=-1)
63
+ return ''.join([self.vocab[lang][x] for x in collapsed_indices if x != self.config.BLANK_ID]).replace('▁', ' ').strip()
64
+
65
+ def _rnnt_decode(self, encoder_outputs, encoded_lengths, lang):
66
+ joint_enc = self.models['joint_enc'](encoder_outputs.transpose(1, 2))
67
+ hyp = [self.config.SOS]
68
+ prev_dec_state = (torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM).to(torch.device(self.config.device)),
69
+ torch.zeros(self.config.PRED_RNN_LAYERS,1,self.config.PRED_RNN_HIDDEN_DIM).to(torch.device(self.config.device)))
70
+
71
+ for t in range(joint_enc.size(1)):
72
+ f = joint_enc[:, t, :].unsqueeze(1)
73
+ not_blank = True
74
+ symbols_added = 0
75
+
76
+ while not_blank and (self.config.RNNT_MAX_SYMBOLS is None or symbols_added < self.config.RNNT_MAX_SYMBOLS):
77
+ g, _, dec_state = self.models['rnnt_decoder'](torch.Tensor([[hyp[-1]]]).long().to(torch.device(self.config.device)), torch.tensor([1]).to(torch.device(self.config.device)), states=prev_dec_state)
78
+ g = self.models['joint_pred'](g.transpose(1, 2))
79
+ joint_out = f + g
80
+ joint_out = self.models['joint_pre_net'](joint_out)
81
+ logits = self.models[f'joint_post_net_{lang}'](joint_out)
82
+ log_probs = logits.log_softmax(dim=-1)
83
+ pred_token = log_probs.argmax(dim=-1).item()
84
+
85
+ if pred_token == self.config.BLANK_ID:
86
+ not_blank = False
87
+ else:
88
+ hyp.append(pred_token)
89
+ prev_dec_state = dec_state
90
+ symbols_added += 1
91
+
92
+ return ''.join([self.vocab[lang][x] for x in hyp if x != self.config.SOS]).replace('▁', ' ').strip()
93
+
94
+ @classmethod
95
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
96
+ loc = snapshot_download(repo_id=pretrained_model_name_or_path)
97
+ return cls(IndicASRConfig(ts_folder=loc, **kwargs))
98
+
99
+ # Register model classes
100
+ AutoConfig.register("iasr", IndicASRConfig)
101
+ AutoModel.register(IndicASRConfig, IndicASRModel)
102
+
103
+ if __name__ == '__main__':
104
+ model_path = "ai4bharat/indic-conformer-600m-multilingual"
105
+ model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
106
+ print(f"Loaded model: {type(model)}")