mgoNeo4j commited on
Commit
a3df93e
·
verified ·
1 Parent(s): bcb1eb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -323,7 +323,7 @@ model = AutoModelForCausalLM.from_pretrained(
323
 
324
  # Question
325
  question = "What are the movies of Tom Hanks?"
326
- schema = "(:Actor)-[:ActedIn]->(:Movie)"
327
  new_message = prepare_chat_prompt(question=question, schema=schema)
328
  prompt = tokenizer.apply_chat_template(new_message, add_generation_prompt=True, tokenize=False)
329
  inputs = tokenizer(prompt, return_tensors="pt", padding=True)
@@ -347,4 +347,10 @@ with torch.no_grad():
347
 
348
  print(outputs)
349
  > ["MATCH (a:Actor {Name: 'Tom Hanks'})-[:ActedIn]->(m:Movie) RETURN m"]
350
- ```
 
 
 
 
 
 
 
323
 
324
  # Question
325
  question = "What are the movies of Tom Hanks?"
326
+ schema = "(:Actor)-[:ActedIn]->(:Movie)" # Check the NOTE below on creating your own schemas
327
  new_message = prepare_chat_prompt(question=question, schema=schema)
328
  prompt = tokenizer.apply_chat_template(new_message, add_generation_prompt=True, tokenize=False)
329
  inputs = tokenizer(prompt, return_tensors="pt", padding=True)
 
347
 
348
  print(outputs)
349
  > ["MATCH (a:Actor {Name: 'Tom Hanks'})-[:ActedIn]->(m:Movie) RETURN m"]
350
+ ```
351
+
352
+ # NOTE on creating your own schemas:
353
+ * In the dataset we used the schemas are already provided. They are created either by
354
+ * Directly using the schema the inout data source provided OR
355
+ * Creating schema using neo4j-graphrag package (Check: SchemaReader.get_schema(...) function)
356
+ * In your own Neo4j database, you can utilize **neo4j-graphrag package::SchemaReader.get_schema(...) function