--- datasets: - namelessai/helply base_model: trillionlabs/Trillion-7B-preview library_name: transformers tags: - pysch - medical - chat - instruction license: mit language: - en - ko --- # Model Card for TrillionHelp **TrillionHelp** uses `trillionlabs/Trillion-7B-preview` as the backbone. ## Model Details This model is fine-tuned on the `namelessai/helply` dataset designed to enhance mental health reasoning capabilities. ### Model Description This model was fine-tuned for assisting pyschologists in assiting patients. - **Developed by:** Alex Scott - **Model type:** Language Model, Adapter Model (available in a folder in the model repo) - **Finetuned from model:** trillionlabs/Trillion-7B-preview ## Usage (Adapter Only, full model snippet coming soon) Use the code snippet below to load the base model and apply the adapter for inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load the base model base_model_name = "trillionlabs/Trillion-7B-preview" adapter_path = "/path/to/adapter" # Replace with actual adapter path tokenizer = AutoTokenizer.from_pretrained(base_model_name) base_model = AutoModelForCausalLM.from_pretrained(base_model_name) # Apply the adapter model = PeftModel.from_pretrained(base_model, adapter_path) model = model.merge_and_unload() # Run inference input_text = "Your input text here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```