|
import os |
|
from huggingface_hub import login |
|
from peft import PeftModel |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
from typing import Dict, List, Any |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
login(token=os.environ["HF_ACCESS_TOKEN"]) |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_storage=torch.bfloat16) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
"meta-llama/Llama-3.2-11B-Vision-Instruct", |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16) |
|
|
|
self.model = PeftModel.from_pretrained(base_model, path) |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
|
|
print(data) |
|
print(type(data)) |
|
|
|
if isinstance(data, dict) and "inputs" in data: |
|
inputs = data["inputs"] |
|
else: |
|
return {"error": "Invalid input format. Expecting {'inputs': 'your text'}"} |
|
|
|
inputs = self.tokenizer( |
|
inputs, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=700).to(self.device) |
|
|
|
with torch.no_grad(): |
|
outputs = self.model.generate( |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
max_new_tokens=700, |
|
temperature=0.01) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |
|
|