ZhiyuanChen commited on
Commit
f0c74e7
·
verified ·
1 Parent(s): 4e7edaa

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - multimolecule/rnacentral
4
+ - multimolecule/rfam
5
+ - multimolecule/ensembl-genome-browser
6
+ - multimolecule/nucleotide
7
+ language: rna
8
+ library_name: multimolecule
9
+ license: agpl-3.0
10
+ pipeline: rna-secondary-structure
11
+ pipeline_tag: other
12
+ tags:
13
+ - Biology
14
+ - RNA
15
+ - ncRNA
16
+ widget:
17
+ - example_title: microRNA 21
18
+ output:
19
+ text: '......................'
20
+ text: UAGCUUAUCAGACUGAUGUUGA
21
+ - example_title: microRNA 146a
22
+ output:
23
+ text: '......................'
24
+ text: UGAGAACUGAAUUCCAUGGGUU
25
+ - example_title: microRNA 155
26
+ output:
27
+ text: '........................'
28
+ text: UUAAUGCUAAUCGUGAUAGGGGUU
29
+ - example_title: metastasis associated lung adenocarcinoma transcript 1
30
+ output:
31
+ text: '............................................................'
32
+ text: AGGCAUUGAGGCAGCCAGCGCAGGGGCUUCUGCUGAGGGGGCAGGCGGAGCUUGAGGAAA
33
+ - example_title: Pvt1 oncogene
34
+ output:
35
+ text: '............................................................'
36
+ text: CCCGCGCUCCUCCGGGCAGAGCGCGUGUGGCGGCCGAGCACAUGGGCCCGCGGGCCGGGC
37
+ - example_title: telomerase RNA component
38
+ output:
39
+ text: '............................................................'
40
+ text: GGGUUGCGGAGGGUGGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAG
41
+ - example_title: vault RNA 2-1
42
+ output:
43
+ text: '..............................(.........................................)...................................'
44
+ text: CGGGUCGGAGUUAGCUCAAGCGGUUACCUCCUCAUGCCGGACUUUCUAUCUGUCCAUCUCUGUGCUGGGGUUCGAGACCCGCGGGUGCUUACUGACCCUUUUAUGCAA
45
+ - example_title: brain cytoplasmic RNA 1
46
+ output:
47
+ text: '........................................................................................................................................................................................................'
48
+ text: GGCCGGGCGCGGUGGCUCACGCCUGUAAUCCCAGCUCUCAGGGAGGCUAAGAGGCGGGAGGAUAGCUUGAGCCCAGGAGUUCGAGACCUGCCUGGGCAAUAUAGCGAGACCCCGUUCUCCAGAAAAAGGAAAAAAAAAAACAAAAGACAAAAAAAAAAUAAGCGUAACUUCCCUCAAAGCAACAACCCCCCCCCCCCUUU
49
+ - example_title: HIV-1 TAR-WT
50
+ output:
51
+ text: '............................(....).......................'
52
+ text: GGUCUCUCUGGUUAGACCAGAUCUGAGCCUGGGAGCUCUCUGGCUAACUAGGGAACC
53
+ ---
54
+
55
+ # RiNALMo
56
+
57
+ Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.
58
+
59
+ ## Disclaimer
60
+
61
+ This is an UNOFFICIAL implementation of the [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043) by Rafael Josip Penić, et al.
62
+
63
+ The OFFICIAL repository of RiNALMo is at [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo).
64
+
65
+ > [!TIP]
66
+ > The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
67
+
68
+ **The team releasing RiNALMo did not write this model card for this model so this model card has been written by the MultiMolecule team.**
69
+
70
+ ## Model Details
71
+
72
+ RiNALMo is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
73
+
74
+ ### Variants
75
+
76
+ - **[multimolecule/rinalmo-giga](https://huggingface.co/multimolecule/rinalmo-giga)**: The RiNALMo model with 650 million parameters.
77
+ - **[multimolecule/rinalmo-mega](https://huggingface.co/multimolecule/rinalmo-mega)**: The RiNALMo model with 150 million parameters.
78
+ - **[multimolecule/rinalmo-micro](https://huggingface.co/multimolecule/rinalmo-micro)**: The RiNALMo model with 30 million parameters.
79
+
80
+ ### Model Specification
81
+
82
+ <table>
83
+ <thead>
84
+ <tr>
85
+ <th>Variants</th>
86
+ <th>Num Layers</th>
87
+ <th>Hidden Size</th>
88
+ <th>Num Heads</th>
89
+ <th>Intermediate Size</th>
90
+ <th>Num Parameters (M)</th>
91
+ <th>FLOPs (G)</th>
92
+ <th>MACs (G)</th>
93
+ <th>Max Num Tokens</th>
94
+ </tr>
95
+ </thead>
96
+ <tbody>
97
+ <tr>
98
+ <td>RiNALMo-Giga</td>
99
+ <td>33</td>
100
+ <td>1280</td>
101
+ <td rowspan="3">20</td>
102
+ <td>5120</td>
103
+ <td>650.88</td>
104
+ <td>168.92</td>
105
+ <td>84.43</td>
106
+ <td rowspan="3">1022</td>
107
+ </tr>
108
+ <tr>
109
+ <td>RiNALMo-Mega</td>
110
+ <td>30</td>
111
+ <td>640</td>
112
+ <td>2560</td>
113
+ <td>148.04</td>
114
+ <td>39.03</td>
115
+ <td>19.5</td>
116
+ </tr>
117
+ <tr>
118
+ <td>RiNALMo-Micro</td>
119
+ <td>12</td>
120
+ <td>480</td>
121
+ <td>1920</td>
122
+ <td>33.48</td>
123
+ <td>8.88</td>
124
+ <td>4.44</td>
125
+ </tr>
126
+ </tbody>
127
+ </table>
128
+
129
+ ### Links
130
+
131
+ - **Code**: [multimolecule.rinalmo](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/rinalmo)
132
+ - **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral)
133
+ - **Paper**: [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043)
134
+ - **Developed by**: Rafael Josip Penić, Tin Vlašić, Roland G. Huber, Yue Wan, Mile Šikić
135
+ - **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
136
+ - **Original Repository**: [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo)
137
+
138
+ ## Usage
139
+
140
+ The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
141
+
142
+ ```bash
143
+ pip install multimolecule
144
+ ```
145
+
146
+ ### Direct Use
147
+
148
+ #### Masked Language Modeling
149
+
150
+ You can use this model directly with a pipeline for masked language modeling:
151
+
152
+ ```python
153
+ <<<<<<< HEAD
154
+ import multimolecule # you must import multimolecule to register models
155
+ from transformers import pipeline
156
+
157
+ predictor = pipeline("fill-mask", model="multimolecule/rinalmo")
158
+ output = predictor("gguc<mask>cucugguuagaccagaucugagccu")
159
+ =======
160
+ >>> import multimolecule # you must import multimolecule to register models
161
+ >>> from transformers import pipeline
162
+
163
+ >>> unmasker = pipeline("fill-mask", model="multimolecule/rinalmo-giga")
164
+ >>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
165
+ [{'score': 0.9774785041809082,
166
+ 'token': 6,
167
+ 'token_str': 'A',
168
+ 'sequence': 'G G U C A C U C U G G U U A G A C C A G A U C U G A G C C U'},
169
+ {'score': 0.004996326752007008,
170
+ 'token': 22,
171
+ 'token_str': 'X',
172
+ 'sequence': 'G G U C X C U C U G G U U A G A C C A G A U C U G A G C C U'},
173
+ {'score': 0.0035297079011797905,
174
+ 'token': 3,
175
+ 'token_str': '<unk>',
176
+ 'sequence': 'G G U C C U C U G G U U A G A C C A G A U C U G A G C C U'},
177
+ {'score': 0.002614670665934682,
178
+ 'token': 10,
179
+ 'token_str': 'N',
180
+ 'sequence': 'G G U C N C U C U G G U U A G A C C A G A U C U G A G C C U'},
181
+ {'score': 0.00249761575832963,
182
+ 'token': 5,
183
+ 'token_str': '<null>',
184
+ 'sequence': 'G G U C C U C U G G U U A G A C C A G A U C U G A G C C U'}]
185
+ >>>>>>> 6fbb6942... update RiNALMo models
186
+ ```
187
+
188
+ ### Downstream Use
189
+
190
+ #### Extract Features
191
+
192
+ Here is how to use this model to get the features of a given sequence in PyTorch:
193
+
194
+ ```python
195
+ from multimolecule import RnaTokenizer, RiNALMoModel
196
+
197
+
198
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-giga")
199
+ model = RiNALMoModel.from_pretrained("multimolecule/rinalmo-giga")
200
+
201
+ text = "UAGCUUAUCAGACUGAUGUUG"
202
+ input = tokenizer(text, return_tensors="pt")
203
+
204
+ output = model(**input)
205
+ ```
206
+
207
+ #### Sequence Classification / Regression
208
+
209
+ > [!NOTE]
210
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
211
+
212
+ Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
213
+
214
+ ```python
215
+ import torch
216
+ from multimolecule import RnaTokenizer, RiNALMoForSequencePrediction
217
+
218
+
219
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-giga")
220
+ model = RiNALMoForSequencePrediction.from_pretrained("multimolecule/rinalmo-giga")
221
+
222
+ text = "UAGCUUAUCAGACUGAUGUUG"
223
+ input = tokenizer(text, return_tensors="pt")
224
+ label = torch.tensor([1])
225
+
226
+ output = model(**input, labels=label)
227
+ ```
228
+
229
+ #### Token Classification / Regression
230
+
231
+ > [!NOTE]
232
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
233
+
234
+ Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
235
+
236
+ ```python
237
+ import torch
238
+ from multimolecule import RnaTokenizer, RiNALMoForTokenPrediction
239
+
240
+
241
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-giga")
242
+ model = RiNALMoForTokenPrediction.from_pretrained("multimolecule/rinalmo-giga")
243
+
244
+ text = "UAGCUUAUCAGACUGAUGUUG"
245
+ input = tokenizer(text, return_tensors="pt")
246
+ label = torch.randint(2, (len(text), ))
247
+
248
+ output = model(**input, labels=label)
249
+ ```
250
+
251
+ #### Contact Classification / Regression
252
+
253
+ > [!NOTE]
254
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
255
+
256
+ Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
257
+
258
+ ```python
259
+ import torch
260
+ from multimolecule import RnaTokenizer, RiNALMoForContactPrediction
261
+
262
+
263
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-giga")
264
+ model = RiNALMoForContactPrediction.from_pretrained("multimolecule/rinalmo-giga")
265
+
266
+ text = "UAGCUUAUCAGACUGAUGUUG"
267
+ input = tokenizer(text, return_tensors="pt")
268
+ label = torch.randint(2, (len(text), len(text)))
269
+
270
+ output = model(**input, labels=label)
271
+ ```
272
+
273
+ ## Training Details
274
+
275
+ RiNALMo used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
276
+
277
+ ### Training Data
278
+
279
+ The RiNALMo model was pre-trained on a cocktail of databases including [RNAcentral](https://rnacentral.org), [Rfam](https://rfam.org), [Ensembl Genome Browser](https://ensembl.org), and [Nucleotide](https://ncbi.nlm.nih.gov/nucleotide).
280
+ The training data contains 36 million unique ncRNA sequences.
281
+
282
+ To ensure sequence diversity in each training batch, RiNALMo clustered the sequences with [MMSeqs2](https://github.com/soedinglab/MMseqs2) into 17 million clusters and then sampled each sequence in the batch from a different cluster.
283
+
284
+ RiNALMo preprocessed all tokens by replacing "U"s with "T"s.
285
+
286
+ Note that during model conversions, "T" is replaced with "U". [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.
287
+
288
+ ### Training Procedure
289
+
290
+ #### Preprocessing
291
+
292
+ RiNALMo used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
293
+
294
+ - 15% of the tokens are masked.
295
+ - In 80% of the cases, the masked tokens are replaced by `<mask>`.
296
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
297
+ - In the 10% remaining cases, the masked tokens are left as is.
298
+
299
+ #### Pre-training
300
+
301
+ The model was trained on 7 NVIDIA A100 GPUs with 80GiB memories.
302
+
303
+ - Batch Size: 1344
304
+ - Epochs: 6
305
+ - Learning rate: 5e-5
306
+ - Learning rate scheduler: Cosine
307
+ - Learning rate warm-up: 2,000 steps
308
+ - Learning rate minimum: 1e-5
309
+ - Dropout: 0.1
310
+
311
+ ## Citation
312
+
313
+ **BibTeX**:
314
+
315
+ ```bibtex
316
+ @ARTICLE{Penic2025-qf,
317
+ title = "{RiNALMo}: general-purpose {RNA} language models can generalize
318
+ well on structure prediction tasks",
319
+ author = "Peni{\'c}, Rafael Josip and Vla{\v s}i{\'c}, Tin and Huber,
320
+ Roland G and Wan, Yue and {\v S}iki{\'c}, Mile",
321
+ abstract = "While RNA has recently been recognized as an interesting
322
+ small-molecule drug target, many challenges remain to be
323
+ addressed before we take full advantage of it. This emphasizes
324
+ the necessity to improve our understanding of its structures and
325
+ functions. Over the years, sequencing technologies have produced
326
+ an enormous amount of unlabeled RNA data, which hides a huge
327
+ potential. Motivated by the successes of protein language
328
+ models, we introduce RiboNucleic Acid Language Model (RiNALMo)
329
+ to unveil the hidden code of RNA. RiNALMo is the largest RNA
330
+ language model to date, with 650M parameters pre-trained on 36M
331
+ non-coding RNA sequences from several databases. It can extract
332
+ hidden knowledge and capture the underlying structure
333
+ information implicitly embedded within the RNA sequences.
334
+ RiNALMo achieves state-of-the-art results on several downstream
335
+ tasks. Notably, we show that its generalization capabilities
336
+ overcome the inability of other deep learning methods for
337
+ secondary structure prediction to generalize on unseen RNA
338
+ families.",
339
+ journal = "Nature Communications",
340
+ publisher = "Springer Science and Business Media LLC",
341
+ volume = 16,
342
+ number = 1,
343
+ pages = "5671",
344
+ month = jul,
345
+ year = 2025,
346
+ copyright = "https://creativecommons.org/licenses/by-nc-nd/4.0",
347
+ language = "en"
348
+ }
349
+ ```
350
+
351
+ ## Contact
352
+
353
+ Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
354
+
355
+ Please contact the authors of the [RiNALMo paper](https://doi.org/10.48550/arXiv.2403.00043) for questions or comments on the paper/model.
356
+
357
+ ## License
358
+
359
+ This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
360
+
361
+ ```spdx
362
+ SPDX-License-Identifier: AGPL-3.0-or-later
363
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RiNALMoForSecondaryStructurePrediction"
4
+ ],
5
+ "attention_dropout": 0.1,
6
+ "bos_token_id": 1,
7
+ "emb_layer_norm_before": true,
8
+ "eos_token_id": 2,
9
+ "head": null,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout": 0.1,
12
+ "hidden_size": 1280,
13
+ "id2label": null,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 5120,
16
+ "label2id": null,
17
+ "layer_norm_eps": 1e-05,
18
+ "learnable_beta": true,
19
+ "lm_head": null,
20
+ "mask_token_id": 4,
21
+ "max_position_embeddings": 1024,
22
+ "model_type": "rinalmo",
23
+ "null_token_id": 5,
24
+ "num_attention_heads": 20,
25
+ "num_hidden_layers": 33,
26
+ "num_labels": 1,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "rotary",
29
+ "token_dropout": true,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.52.4",
32
+ "unk_token_id": 3,
33
+ "use_cache": true,
34
+ "vocab_size": 26
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6d5fabd1911704e5df7dd93b318b5508e681ce63cb5283544f0da8937df202e
3
+ size 2604729176
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ef7a3f9e82a66a0ee764d03efa28dd20d2fd1d12dc1f37d5c44bbaffedad8a
3
+ size 2604822154
special_tokens_map.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<null>"
4
+ ],
5
+ "bos_token": "<cls>",
6
+ "cls_token": "<cls>",
7
+ "eos_token": "<eos>",
8
+ "mask_token": "<mask>",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "<eos>",
11
+ "unk_token": "<unk>"
12
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<cls>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<eos>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<null>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "additional_special_tokens": [
53
+ "<null>"
54
+ ],
55
+ "bos_token": "<cls>",
56
+ "clean_up_tokenization_spaces": true,
57
+ "cls_token": "<cls>",
58
+ "codon": false,
59
+ "eos_token": "<eos>",
60
+ "extra_special_tokens": {},
61
+ "mask_token": "<mask>",
62
+ "model_max_length": 1000000000000000019884624838656,
63
+ "nmers": 1,
64
+ "pad_token": "<pad>",
65
+ "replace_T_with_U": true,
66
+ "sep_token": "<eos>",
67
+ "tokenizer_class": "RnaTokenizer",
68
+ "unk_token": "<unk>"
69
+ }
vocab.txt ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <pad>
2
+ <cls>
3
+ <eos>
4
+ <unk>
5
+ <mask>
6
+ <null>
7
+ A
8
+ C
9
+ G
10
+ U
11
+ N
12
+ R
13
+ Y
14
+ S
15
+ W
16
+ K
17
+ M
18
+ B
19
+ D
20
+ H
21
+ V
22
+ .
23
+ X
24
+ *
25
+ -
26
+ I