mobicham commited on
Commit
1ef1e2c
·
verified ·
1 Parent(s): 1fc98aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -197
README.md CHANGED
@@ -1,199 +1,75 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ train: false
4
+ inference: false
5
+ pipeline_tag: text-generation
6
  ---
7
+ This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> model re-distilled for better performance.
8
+
9
+ ## Performance
10
+
11
+ | Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a> |
12
+ |:-------------------:|:--------:|:----------------:|
13
+ | ARC (25-shot) | 40.96 | <b>41.55</b> |
14
+ | HellaSwag (10-shot)| 44 | <b>45.88</b> |
15
+ | MMLU (5-shot) | 39.27 | <b>41.82</b> |
16
+ | TruthfulQA-MC2 | 45.17 | <b>46.63</b> |
17
+ | Winogrande (5-shot)| 55.49 | <b>57.7</b> |
18
+ | GSM8K (5-shot) | 69.9 | <b>74.3</b> |
19
+ | Average | 49.13 | <b>51.31</b> |
20
+
21
+ | Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a> |
22
+ |:-------------------:|:--------:|:----------------:|
23
+ | GPQA (0-shot) | 26.96 | <b>26.99</b> |
24
+ | MMLU PRO (5-shot) | 16.74 | <b>19.86</b> |
25
+ | MUSR (0-shot) | 35.93 | <b>36.6</b> |
26
+ | BBH (3-shot) | 35.12 | <b>37.23</b> |
27
+ | IfEval (0-shot) | 24.94 | <b>27.22</b> |
28
+
29
+ ## Usage
30
+ ```Python
31
+ import torch
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+ compute_dtype = torch.bfloat16
34
+ device = 'cuda'
35
+ model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1"
36
+
37
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
38
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
39
+
40
+ chat = tokenizer.apply_chat_template([{"role":"user", "content":"What is 1.5+102.2?"}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
41
+ outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True)
42
+ print(tokenizer.decode(outputs[0]))
43
+ ```
44
+
45
+ Output:
46
+ ```
47
+ <|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
48
+ First, I identify the numbers involved in the addition: 1.5 and 102.2.
49
+
50
+ Next, I add the whole numbers: 1 + 102 equals 103.
51
+
52
+ Then, I add the decimal parts: 0.5 + 0.2 equals 0.7.
53
+
54
+ Finally, I combine the results: 103 + 0.7 equals 103.7.
55
+ </think>
56
+
57
+ To solve the addition \(1.5 + 102.2\), follow these steps:
58
+
59
+ 1. **Add the whole numbers:**
60
+ \[
61
+ 1 + 102 = 103
62
+ \]
63
+
64
+ 2. **Add the decimal parts:**
65
+ \[
66
+ 0.5 + 0.2 = 0.7
67
+ \]
68
+
69
+ 3. **Combine the results:**
70
+ \[
71
+ 103 + 0.7 = 103.7
72
+ \]
73
+
74
+ So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|>
75
+ ```