deeptimhe commited on
Commit
312c655
·
0 Parent(s):

upload checkpoints

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoints filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://github.com/microsoft/VidTok/blob/main/LICENSE
4
+
5
+ tags:
6
+ - tokenization
7
+ - video generation
8
+ - world model
9
+ - vae
10
+ - fsq
11
+ ---
12
+
13
+ # VidTok
14
+ A Family of Versatile and State-Of-The-Art Video Tokenizers
15
+
16
+ <img src="./assets/radar.png" width="95%" alt="radar" align="center">
17
+
18
+ VidTok is a cutting-edge family of video tokenizers that delivers state-of-the-art performance in both continuous and discrete tokenizations with various compression rates. VidTok incorporates several key advancements over existing approaches:
19
+ * ⚡️ **Efficient Architecture**. Separate spatial and temporal sampling reduces computational complexity without sacrificing quality.
20
+ * 🔥 **Advanced Quantization**. Finite Scalar Quantization (FSQ) addresses training instability and codebook collapse in discrete tokenization.
21
+ * 💥 **Enhanced Training**. A two-stage strategy—pre-training on low-res videos and fine-tuning on high-res—boosts efficiency. Reduced frame rates improve motion dynamics representation.
22
+
23
+ VidTok, trained on a large-scale video dataset, outperforms previous models across all metrics, including PSNR, SSIM, LPIPS, and FVD.
24
+
25
+ <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/619b7b1cab4c7b7f16a7d59e/4v2I2YAZJeWSnd7iqntGX.mp4"></video>
26
+
27
+ Resources and technical documentation:
28
+
29
+ + [GitHub](https://github.com/microsoft/VidTok)
30
+ + [arXiv](https://arxiv.org/pdf/2412.13061)
31
+
32
+
33
+ ## Model Performance
34
+
35
+ The following table shows model performance evaluated on 30 test videos in [MCL_JCL](https://mcl.usc.edu/mcl-jcv-dataset/) dataset, with a sample fps of 30. The input size is `17x256x256` for causal models and `16x256x256` for non-causal models. `VCR` indicates the video compression ratio `TxHxW`.
36
+
37
+ | Model | Regularizer | Causal | VCR | PSNR | SSIM | LPIPS | FVD |
38
+ |------|------|------|------|------|------|------|------|
39
+ | [vidtok_kl_causal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_4chn.ckpt) | KL-4chn | ✔️ | 4x8x8 | 29.64 | 0.852| 0.114| 194.2|
40
+ | [vidtok_kl_causal_488_8chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_8chn.ckpt) | KL-8chn | ✔️ |4x8x8 | 31.83 | 0.897| 0.083| 109.3|
41
+ | [vidtok_kl_causal_488_16chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_16chn.ckpt) | KL-16chn | ✔️ | 4x8x8 | 35.04 |0.942 |0.047 | 78.9|
42
+ | [vidtok_kl_causal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_41616_4chn.ckpt) | KL-4chn | ✔️ | 4x16x16 | 25.05 | 0.711| 0.228| 549.1| |
43
+ | [vidtok_kl_noncausal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_488_4chn.ckpt) | KL-4chn | ✖️ | 4x8x8 | 30.60 | 0.876 | 0.098| 157.9|
44
+ | [vidtok_kl_noncausal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt) | KL-4chn | ✖️ | 4x16x16 | 26.06 | 0.751 | 0.190|423.2 |
45
+ | [vidtok_fsq_causal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_262144.ckpt) | FSQ-262,144 | ✔️ | 4x8x8 | 29.82 | 0.867 |0.106 | 160.1|
46
+ | [vidtok_fsq_causal_488_32768](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_32768.ckpt) | FSQ-32,768 | ✔️ | 4x8x8 | 29.16 | 0.854 | 0.117| 196.9|
47
+ | [vidtok_fsq_causal_488_4096](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_4096.ckpt) | FSQ-4096 | ✔️ | 4x8x8 | 28.36 | 0.832 | 0.133| 218.1|
48
+ | [vidtok_fsq_causal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_41616_262144.ckpt) | FSQ-262,144 | ✔️ | 4x16x16 | 25.38 | 0.738 |0.206 | 430.1|
49
+ | [vidtok_fsq_noncausal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_488_262144.ckpt) | FSQ-262,144 | ✖️ | 4x8x8 | 30.78 | 0.889| 0.091| 132.1|
50
+ | [vidtok_fsq_noncausal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt) | FSQ-262,144 | ✖️ | 4x16x16 | 26.37 | 0.772| 0.171| 357.0|
51
+
52
+ ## Training
53
+ ### Training Data
54
+
55
+ The training data of VidTok is divided into two sets based on video quality.
56
+ 1. Training Set 1 consists of approximately 400K of low-resolution videos (e.g., 480p). The videos are natural videos with diverse lightning, motions, and scenarios.
57
+ 2. Training Set 2 includes approximately 10K of high-resolution videos (e.g., 1080p). The videos are natural videos with diverse lightning, motions, and scenarios.
58
+
59
+ ### Training Procedure
60
+
61
+ Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed training instructions.
62
+
63
+ ## Evaluation
64
+
65
+ Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed evaluation instructions.
66
+
67
+ ## Intended Uses
68
+
69
+ We are sharing our model with the research community to foster further research in this area:
70
+ * Training your own video tokenizers for research purpose.
71
+ * Video tokenization with various compression rates.
72
+
73
+ ## Downstream Uses
74
+
75
+ Our model is designed to accelerate research on video-centric research, for use as a building block for the following applications:
76
+ * Video generation on the continuous / discrete latent tokens.
77
+ * World modelling on the continuous / discrete latent tokens.
78
+ * Generative games on the continuous / discrete latent tokens.
79
+ * Video understanding from the latent tokens.
80
+
81
+ ## Out-of-scope Uses
82
+
83
+ Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of video tokenizers (e.g., performance degradation on out-of-domain data) as they select use cases, and evaluate and mitigate for privacy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
84
+
85
+ Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
86
+
87
+ ## Risks and Limitations
88
+
89
+ Some of the limitations of this model to be aware of include:
90
+ * VidTok may lose detailed information on the reconstructed content.
91
+ * VidTok inherits any biases, errors, or omissions characteristic of its training data.
92
+ * VidTok was developed for research and experimental purposes. Further testing and validation are needed before considering its application in commercial or real-world scenarios.
93
+
94
+ ## Recommendations
95
+
96
+ Some recommendations for alleviating potential limitations include:
97
+ * Lower compression rate provides higher reconstruction quality.
98
+ * For domain-specific video tokenization, it is suggested to fine-tune the model on the domain-specific videos.
99
+
100
+ ## License
101
+
102
+ The model is released under the [MIT license](https://github.com/microsoft/VidTok/blob/main/LICENSE).
103
+
104
+ ## Contact
105
+
106
+ We welcome feedback and collaboration from our audience. If you have suggestions, questions, or observe unexpected/offensive behavior in our technology, please contact us at tianyuhe@microsoft.com.
assets/radar.png ADDED
checkpoints/vidtok_fsq_causal_41616_262144.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86035579f7037d9ec2ca1ef9e0c310c03882fcbad82b0ce51a40568db786be63
3
+ size 866056490
checkpoints/vidtok_fsq_causal_488_262144.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56139b893176f11a6bf03f44a384c4a9c838fb7fc05cf97352b1e96a07a8c4bf
3
+ size 699955790
checkpoints/vidtok_fsq_causal_488_32768.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc7f0039c53ec1de83322698f1a8847feaba95d3060798c28cb0e1313604283d
3
+ size 699844722
checkpoints/vidtok_fsq_causal_488_4096.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:610348b0c8c25df1e92d31e6135089f8daed50fe30af40f4432994d9ce283fb1
3
+ size 699733654
checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22127b45eaac642693041be2f5551a488de04ad17bcfb20c7b392d61c99eda99
3
+ size 866052922
checkpoints/vidtok_fsq_noncausal_488_262144.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dcb479f276e8daef9aacd252912e1efc883669adb335e5a4b82aa17bd5387ce
3
+ size 699952738
checkpoints/vidtok_kl_causal_288_8chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:097f9ce6ad8ccf36d83ee6953118d6f426398e89188ea9f2e07afc8872b904b0
3
+ size 665222874
checkpoints/vidtok_kl_causal_41616_4chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d92d7b9d639cc0633f23b5447e0a9f7b460403ec1eec4d755ce56575037814c3
3
+ size 866054682
checkpoints/vidtok_kl_causal_444_4chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc2e0fce3c127effcd17c5ca47f9cd29b8dd2f67a800e054154c56fa5673d72
3
+ size 689923130
checkpoints/vidtok_kl_causal_488_16chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5efdf675a98ed6867a454bc4f65130de79b1caddd89d9fcd3a43eb1a981f7eb6
3
+ size 701945558
checkpoints/vidtok_kl_causal_488_4chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e10481b370af68b3712d91affd0d5a8a59e83a1d18dcbdcc3fa02376668a682c
3
+ size 699954234
checkpoints/vidtok_kl_causal_488_8chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6674a27f4ae661eebf105a336b6ac10d1a09ef7b38edd71470081360a4607331
3
+ size 700617850
checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64273b7030a3b3c2d194521e4778cfa8a684cda03d71b05b766e68e4112980c6
3
+ size 866051114
checkpoints/vidtok_kl_noncausal_488_4chn.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0ebf5e03f4bc1855f98a83c45097e305f2704a3d814e916e90b6b730d4b49e7
3
+ size 699951182