Commit
·
312c655
0
Parent(s):
upload checkpoints
Browse files- .gitattributes +36 -0
- README.md +106 -0
- assets/radar.png +0 -0
- checkpoints/vidtok_fsq_causal_41616_262144.ckpt +3 -0
- checkpoints/vidtok_fsq_causal_488_262144.ckpt +3 -0
- checkpoints/vidtok_fsq_causal_488_32768.ckpt +3 -0
- checkpoints/vidtok_fsq_causal_488_4096.ckpt +3 -0
- checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt +3 -0
- checkpoints/vidtok_fsq_noncausal_488_262144.ckpt +3 -0
- checkpoints/vidtok_kl_causal_288_8chn.ckpt +3 -0
- checkpoints/vidtok_kl_causal_41616_4chn.ckpt +3 -0
- checkpoints/vidtok_kl_causal_444_4chn.ckpt +3 -0
- checkpoints/vidtok_kl_causal_488_16chn.ckpt +3 -0
- checkpoints/vidtok_kl_causal_488_4chn.ckpt +3 -0
- checkpoints/vidtok_kl_causal_488_8chn.ckpt +3 -0
- checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt +3 -0
- checkpoints/vidtok_kl_noncausal_488_4chn.ckpt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoints filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://github.com/microsoft/VidTok/blob/main/LICENSE
|
4 |
+
|
5 |
+
tags:
|
6 |
+
- tokenization
|
7 |
+
- video generation
|
8 |
+
- world model
|
9 |
+
- vae
|
10 |
+
- fsq
|
11 |
+
---
|
12 |
+
|
13 |
+
# VidTok
|
14 |
+
A Family of Versatile and State-Of-The-Art Video Tokenizers
|
15 |
+
|
16 |
+
<img src="./assets/radar.png" width="95%" alt="radar" align="center">
|
17 |
+
|
18 |
+
VidTok is a cutting-edge family of video tokenizers that delivers state-of-the-art performance in both continuous and discrete tokenizations with various compression rates. VidTok incorporates several key advancements over existing approaches:
|
19 |
+
* ⚡️ **Efficient Architecture**. Separate spatial and temporal sampling reduces computational complexity without sacrificing quality.
|
20 |
+
* 🔥 **Advanced Quantization**. Finite Scalar Quantization (FSQ) addresses training instability and codebook collapse in discrete tokenization.
|
21 |
+
* 💥 **Enhanced Training**. A two-stage strategy—pre-training on low-res videos and fine-tuning on high-res—boosts efficiency. Reduced frame rates improve motion dynamics representation.
|
22 |
+
|
23 |
+
VidTok, trained on a large-scale video dataset, outperforms previous models across all metrics, including PSNR, SSIM, LPIPS, and FVD.
|
24 |
+
|
25 |
+
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/619b7b1cab4c7b7f16a7d59e/4v2I2YAZJeWSnd7iqntGX.mp4"></video>
|
26 |
+
|
27 |
+
Resources and technical documentation:
|
28 |
+
|
29 |
+
+ [GitHub](https://github.com/microsoft/VidTok)
|
30 |
+
+ [arXiv](https://arxiv.org/pdf/2412.13061)
|
31 |
+
|
32 |
+
|
33 |
+
## Model Performance
|
34 |
+
|
35 |
+
The following table shows model performance evaluated on 30 test videos in [MCL_JCL](https://mcl.usc.edu/mcl-jcv-dataset/) dataset, with a sample fps of 30. The input size is `17x256x256` for causal models and `16x256x256` for non-causal models. `VCR` indicates the video compression ratio `TxHxW`.
|
36 |
+
|
37 |
+
| Model | Regularizer | Causal | VCR | PSNR | SSIM | LPIPS | FVD |
|
38 |
+
|------|------|------|------|------|------|------|------|
|
39 |
+
| [vidtok_kl_causal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_4chn.ckpt) | KL-4chn | ✔️ | 4x8x8 | 29.64 | 0.852| 0.114| 194.2|
|
40 |
+
| [vidtok_kl_causal_488_8chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_8chn.ckpt) | KL-8chn | ✔️ |4x8x8 | 31.83 | 0.897| 0.083| 109.3|
|
41 |
+
| [vidtok_kl_causal_488_16chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_16chn.ckpt) | KL-16chn | ✔️ | 4x8x8 | 35.04 |0.942 |0.047 | 78.9|
|
42 |
+
| [vidtok_kl_causal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_41616_4chn.ckpt) | KL-4chn | ✔️ | 4x16x16 | 25.05 | 0.711| 0.228| 549.1| |
|
43 |
+
| [vidtok_kl_noncausal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_488_4chn.ckpt) | KL-4chn | ✖️ | 4x8x8 | 30.60 | 0.876 | 0.098| 157.9|
|
44 |
+
| [vidtok_kl_noncausal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt) | KL-4chn | ✖️ | 4x16x16 | 26.06 | 0.751 | 0.190|423.2 |
|
45 |
+
| [vidtok_fsq_causal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_262144.ckpt) | FSQ-262,144 | ✔️ | 4x8x8 | 29.82 | 0.867 |0.106 | 160.1|
|
46 |
+
| [vidtok_fsq_causal_488_32768](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_32768.ckpt) | FSQ-32,768 | ✔️ | 4x8x8 | 29.16 | 0.854 | 0.117| 196.9|
|
47 |
+
| [vidtok_fsq_causal_488_4096](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_4096.ckpt) | FSQ-4096 | ✔️ | 4x8x8 | 28.36 | 0.832 | 0.133| 218.1|
|
48 |
+
| [vidtok_fsq_causal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_41616_262144.ckpt) | FSQ-262,144 | ✔️ | 4x16x16 | 25.38 | 0.738 |0.206 | 430.1|
|
49 |
+
| [vidtok_fsq_noncausal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_488_262144.ckpt) | FSQ-262,144 | ✖️ | 4x8x8 | 30.78 | 0.889| 0.091| 132.1|
|
50 |
+
| [vidtok_fsq_noncausal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt) | FSQ-262,144 | ✖️ | 4x16x16 | 26.37 | 0.772| 0.171| 357.0|
|
51 |
+
|
52 |
+
## Training
|
53 |
+
### Training Data
|
54 |
+
|
55 |
+
The training data of VidTok is divided into two sets based on video quality.
|
56 |
+
1. Training Set 1 consists of approximately 400K of low-resolution videos (e.g., 480p). The videos are natural videos with diverse lightning, motions, and scenarios.
|
57 |
+
2. Training Set 2 includes approximately 10K of high-resolution videos (e.g., 1080p). The videos are natural videos with diverse lightning, motions, and scenarios.
|
58 |
+
|
59 |
+
### Training Procedure
|
60 |
+
|
61 |
+
Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed training instructions.
|
62 |
+
|
63 |
+
## Evaluation
|
64 |
+
|
65 |
+
Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed evaluation instructions.
|
66 |
+
|
67 |
+
## Intended Uses
|
68 |
+
|
69 |
+
We are sharing our model with the research community to foster further research in this area:
|
70 |
+
* Training your own video tokenizers for research purpose.
|
71 |
+
* Video tokenization with various compression rates.
|
72 |
+
|
73 |
+
## Downstream Uses
|
74 |
+
|
75 |
+
Our model is designed to accelerate research on video-centric research, for use as a building block for the following applications:
|
76 |
+
* Video generation on the continuous / discrete latent tokens.
|
77 |
+
* World modelling on the continuous / discrete latent tokens.
|
78 |
+
* Generative games on the continuous / discrete latent tokens.
|
79 |
+
* Video understanding from the latent tokens.
|
80 |
+
|
81 |
+
## Out-of-scope Uses
|
82 |
+
|
83 |
+
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of video tokenizers (e.g., performance degradation on out-of-domain data) as they select use cases, and evaluate and mitigate for privacy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
|
84 |
+
|
85 |
+
Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
|
86 |
+
|
87 |
+
## Risks and Limitations
|
88 |
+
|
89 |
+
Some of the limitations of this model to be aware of include:
|
90 |
+
* VidTok may lose detailed information on the reconstructed content.
|
91 |
+
* VidTok inherits any biases, errors, or omissions characteristic of its training data.
|
92 |
+
* VidTok was developed for research and experimental purposes. Further testing and validation are needed before considering its application in commercial or real-world scenarios.
|
93 |
+
|
94 |
+
## Recommendations
|
95 |
+
|
96 |
+
Some recommendations for alleviating potential limitations include:
|
97 |
+
* Lower compression rate provides higher reconstruction quality.
|
98 |
+
* For domain-specific video tokenization, it is suggested to fine-tune the model on the domain-specific videos.
|
99 |
+
|
100 |
+
## License
|
101 |
+
|
102 |
+
The model is released under the [MIT license](https://github.com/microsoft/VidTok/blob/main/LICENSE).
|
103 |
+
|
104 |
+
## Contact
|
105 |
+
|
106 |
+
We welcome feedback and collaboration from our audience. If you have suggestions, questions, or observe unexpected/offensive behavior in our technology, please contact us at tianyuhe@microsoft.com.
|
assets/radar.png
ADDED
![]() |
checkpoints/vidtok_fsq_causal_41616_262144.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86035579f7037d9ec2ca1ef9e0c310c03882fcbad82b0ce51a40568db786be63
|
3 |
+
size 866056490
|
checkpoints/vidtok_fsq_causal_488_262144.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56139b893176f11a6bf03f44a384c4a9c838fb7fc05cf97352b1e96a07a8c4bf
|
3 |
+
size 699955790
|
checkpoints/vidtok_fsq_causal_488_32768.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc7f0039c53ec1de83322698f1a8847feaba95d3060798c28cb0e1313604283d
|
3 |
+
size 699844722
|
checkpoints/vidtok_fsq_causal_488_4096.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:610348b0c8c25df1e92d31e6135089f8daed50fe30af40f4432994d9ce283fb1
|
3 |
+
size 699733654
|
checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22127b45eaac642693041be2f5551a488de04ad17bcfb20c7b392d61c99eda99
|
3 |
+
size 866052922
|
checkpoints/vidtok_fsq_noncausal_488_262144.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dcb479f276e8daef9aacd252912e1efc883669adb335e5a4b82aa17bd5387ce
|
3 |
+
size 699952738
|
checkpoints/vidtok_kl_causal_288_8chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:097f9ce6ad8ccf36d83ee6953118d6f426398e89188ea9f2e07afc8872b904b0
|
3 |
+
size 665222874
|
checkpoints/vidtok_kl_causal_41616_4chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d92d7b9d639cc0633f23b5447e0a9f7b460403ec1eec4d755ce56575037814c3
|
3 |
+
size 866054682
|
checkpoints/vidtok_kl_causal_444_4chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcc2e0fce3c127effcd17c5ca47f9cd29b8dd2f67a800e054154c56fa5673d72
|
3 |
+
size 689923130
|
checkpoints/vidtok_kl_causal_488_16chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5efdf675a98ed6867a454bc4f65130de79b1caddd89d9fcd3a43eb1a981f7eb6
|
3 |
+
size 701945558
|
checkpoints/vidtok_kl_causal_488_4chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e10481b370af68b3712d91affd0d5a8a59e83a1d18dcbdcc3fa02376668a682c
|
3 |
+
size 699954234
|
checkpoints/vidtok_kl_causal_488_8chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6674a27f4ae661eebf105a336b6ac10d1a09ef7b38edd71470081360a4607331
|
3 |
+
size 700617850
|
checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64273b7030a3b3c2d194521e4778cfa8a684cda03d71b05b766e68e4112980c6
|
3 |
+
size 866051114
|
checkpoints/vidtok_kl_noncausal_488_4chn.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ebf5e03f4bc1855f98a83c45097e305f2704a3d814e916e90b6b730d4b49e7
|
3 |
+
size 699951182
|