
Update modeling_phi4mm.py to avoid `TypeError: unsupported operand type(s) for *: 'int' and 'NoneType' `
8160543
verified
# coding=utf-8 | |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Phi-4-MM model.""" | |
import math | |
import warnings | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache | |
from transformers.generation import GenerationMixin | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
SequenceClassifierOutputWithPast, | |
TokenClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig | |
from .configuration_phi4mm import Phi4MMConfig | |
from .processing_phi4mm import InputMode | |
from .vision_siglip_navit import get_siglip_vision_model | |
from .speech_conformer_encoder import ConformerEncoder | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "TBA" | |
_CONFIG_FOR_DOC = "Phi4MMConfig" | |
# Special token ids | |
_IMAGE_SPECIAL_TOKEN_ID = 200010 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`) | |
_AUDIO_SPECIAL_TOKEN_ID = 200011 # '<|endoftext11|>' | |
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE = [-9999, -1] # For backward compatibility | |
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE = [float('-inf'), -10000] # For backward compatibility | |
class Phi4MMImageEmbedding(nn.Module): | |
"""Image embedding.""" | |
def __init__(self, config: PretrainedConfig, **kwargs) -> None: | |
super().__init__() | |
# n_embed or hidden_size | |
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | |
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | |
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | |
self.drop = nn.Dropout(embd_drop) | |
else: | |
self.drop = None | |
logger.info(f"create image tower {config.img_processor}") | |
enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) | |
# Load SigLIP model | |
self.img_processor = get_siglip_vision_model( | |
_flash_attn_2_enabled=config._attn_implementation == 'flash_attention_2' | |
) | |
pe_weight = self.img_processor.embeddings.position_embedding.weight | |
L, D = pe_weight.size() | |
H = int(math.sqrt(L)) | |
assert H**2 == L | |
if H % 2 != 0: #and kwargs.get('image_token_compression_cls', None) is None: | |
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1)) | |
H += 1 | |
image_dim_out = D | |
# ((448/14)//2)**2 | |
self.num_img_tokens = (H//2)**2 | |
self.base_feat_height_target = H | |
if enable_gradient_checkpointing: | |
self.img_processor.encoder.gradient_checkpointing = True | |
self.image_dim_out = image_dim_out | |
self.img_sizes = None | |
self.image_attention_mask = None | |
# global_gn and sub_gn for hd transform, serves as line separator | |
self.use_hd_transform = kwargs.get('use_hd_transform', False) | |
self.with_learnable_separator = kwargs.get('with_learnable_separator', False) | |
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') | |
self.freeze_img_processor = kwargs.get('freeze_img_processor', False) | |
self.crop_size = kwargs.get('crop_size', 336) | |
logger.info(f'freeze_img_processor = {self.freeze_img_processor}') | |
# image token compression | |
self.image_token_compression_cls = kwargs.get('image_token_compression_cls', None) | |
if self.image_token_compression_cls == 'avg_pool_2d': | |
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2) | |
self.base_feat_height_reduction = 1 | |
self.base_feat_height_target = self.base_feat_height_target // 2 | |
elif self.image_token_compression_cls is None: | |
self.image_token_compression = None | |
self.base_feat_height_reduction = 2 | |
else: | |
raise NotImplementedError(f'image_token_compression_cls = {self.image_token_compression_cls}, not implemented') | |
# with_hd_transform and with_learnable_separator should have same value | |
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' | |
if self.with_learnable_separator: | |
assert self.use_hd_transform, 'learnable separator is only for hd transform' | |
# 1024 * 4, merge spatial to channel dimension | |
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) | |
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) | |
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') | |
projection_cls = kwargs.get('projection_cls', 'linear') | |
if projection_cls == 'linear': | |
self.img_projection = nn.Linear(image_dim_out, hidden_size) | |
elif projection_cls == 'mlp' and self.use_hd_transform: | |
dim_projection = hidden_size | |
depth = 2 | |
layers = [nn.Linear(image_dim_out * self.base_feat_height_reduction**2, dim_projection)] | |
for _ in range(1, depth): | |
layers.extend([nn.GELU(), | |
nn.Linear(dim_projection, dim_projection)]) | |
self.img_projection = nn.Sequential(*layers) | |
elif projection_cls == 'mlp': | |
# follow llava-v1.5's implementation | |
# (do not use image_projection and image_proj_norm) | |
dim_projection = hidden_size | |
depth = 2 | |
layers = [nn.Linear(image_dim_out, dim_projection)] | |
for _ in range(1, depth): | |
layers.extend([nn.GELU(), | |
nn.Linear(dim_projection, dim_projection)]) | |
self.img_projection = nn.Sequential(*layers) | |
else: | |
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | |
self.vocab_size = config.vocab_size | |
self.img_features = None | |
if isinstance(config.img_processor, dict): | |
self.layer_idx = config.img_processor.get('layer_idx', -2) | |
self.type_feature = config.img_processor.get('type_feature', 'patch') | |
else: | |
self.layer_idx = -2 | |
self.type_feature = 'patch' | |
def set_img_features(self, img_features: torch.FloatTensor) -> None: | |
self.img_features = img_features | |
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: | |
self.img_sizes = img_sizes | |
def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: | |
self.image_attention_mask = image_attention_mask | |
def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor: | |
LAYER_IDX = self.layer_idx | |
TYPE_FEATURE = self.type_feature | |
if self.freeze_img_processor: | |
with torch.no_grad(): | |
if attention_mask is not None: | |
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) | |
else: | |
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | |
img_feature = img_processor_output.hidden_states[LAYER_IDX] | |
else: | |
if attention_mask is not None: | |
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) | |
else: | |
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | |
img_feature = img_processor_output.hidden_states[LAYER_IDX] | |
if TYPE_FEATURE == "patch": | |
patch_feature = img_feature | |
if self.image_token_compression is not None: | |
# reshape to 2D tensor | |
width = int(math.sqrt(patch_feature.size(1))) | |
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | |
# convert to NCHW | |
patch_feature = patch_feature.permute(0, 3, 1, 2) | |
if getattr(self, 'img_processor_padding', None) is not None: | |
patch_feature = self.img_processor_padding(patch_feature) | |
patch_feature = self.image_token_compression(patch_feature) | |
# convert to NHWC | |
patch_feature = patch_feature.permute(0, 2, 3, 1) | |
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) | |
elif getattr(self, 'img_processor_padding', None) is not None: | |
width = int(math.sqrt(patch_feature.size(1))) | |
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | |
# convert to NCHW | |
patch_feature = patch_feature.permute(0, 3, 1, 2) | |
patch_feature = self.img_processor_padding(patch_feature) | |
# convert to NHWC | |
patch_feature = patch_feature.permute(0, 2, 3, 1) | |
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) | |
return patch_feature | |
if TYPE_FEATURE == "cls_patch": | |
if self.image_token_compression is not None: | |
# reshape to 2D tensor | |
patch_feature = img_feature[:, 1:] | |
cls_feature = img_feature[:, 0] | |
width = math.sqrt(patch_feature.size(1)) | |
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) | |
patch_feature = self.image_token_compression(patch_feature) | |
patch_feature = patch_feature.view(-1, patch_feature.size(-2) * patch_feature.size(-1)) | |
img_feature = torch.cat([cls_feature, patch_feature], dim=1) | |
return img_feature | |
logger.info(f'processed img feature size = {img_feature.size()}') | |
raise NotImplementedError | |
def spatiotemporal_pool(self, x, num_img_tokens, batch_size=1, T=1): | |
if self.image_pos_embed is not None: | |
x = x.view(batch_size * T, -1, x.shape[-1]) | |
num_tokens = x.shape[-2] | |
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) | |
assert h * w == num_tokens, 'only support square feature maps for now' | |
x = x.view(batch_size * T, h, w, x.shape[-1]) | |
pos_embed = self.image_pos_embed(x) | |
x = x + pos_embed | |
x = x.view(batch_size, T * h * w, x.shape[-1]) | |
if self.visual_temporal_embed is not None: | |
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) | |
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) | |
new_x = [] | |
# [bsz, T * H' * W', C] -> [bsz, T, C] | |
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) | |
new_x.append(spatial_avg_pool_x) | |
# [bsz, T * H' * W', C] -> [bsz, H'*W', C] | |
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) | |
new_x.append(temporal_avg_pool_x) | |
x = torch.cat(new_x, dim=1).view(-1, self.image_dim_out) | |
num_img_tokens += T | |
return x, num_img_tokens | |
def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, image_sizes=None, **kwargs) -> torch.FloatTensor: | |
if isinstance(input_ids, tuple): | |
# # pipeline parallel | |
input_ids, input_embeds = input_ids | |
img_embeds = input_embeds | |
if image_sizes is None and 'image_sizes' in kwargs: | |
image_sizes = kwargs['image_sizes'] | |
img_sizes = image_sizes | |
if self.img_features is not None: | |
img_embeds = self.img_features.clone() | |
self.img_features = None | |
if self.img_sizes is not None: | |
img_sizes = self.img_sizes | |
dtype = self.img_processor.embeddings.patch_embedding.weight.dtype | |
if img_embeds is not None: | |
# convert to bf16 | |
img_embeds = img_embeds.to(dtype) | |
if self.image_attention_mask is not None: | |
image_attention_mask = self.image_attention_mask.clone() | |
self.image_attention_mask = None | |
elif 'image_attention_mask' in kwargs: | |
image_attention_mask = kwargs['image_attention_mask'] | |
else: | |
image_attention_mask = None | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
with torch.no_grad(): | |
positions = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=False) | |
positions_tuple = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=True) | |
# logger.info(f'position size: {positions.size()} ...') | |
fake_image_forward = False | |
select = False | |
hd_transform = False | |
if isinstance(self.img_projection, nn.Sequential): | |
target_device = self.img_projection[0].bias.device | |
target_dtype = self.img_projection[0].bias.dtype | |
else: # It's a single nn.Linear layer | |
target_device = self.img_projection.bias.device | |
target_dtype = self.img_projection.bias.dtype | |
num_img_tokens = self.num_img_tokens | |
if len(positions.tolist()) > 0: | |
if self.use_hd_transform and img_sizes is not None and len(img_sizes): | |
hd_transform = True | |
assert img_embeds.ndim == 5, f'(branch 1) img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform' | |
# img_embeds: (num_images, max_num_crops, 3, H, W) | |
# img_sizes: (num_images, 2).view(1, -1) | |
bs = img_embeds.shape[0] | |
# Nx(HW)xC | |
if image_attention_mask is not None and len(image_attention_mask) > 0: | |
img_features = self.get_img_features(img_embeds.flatten(0, 1), attention_mask=image_attention_mask.type(torch.BoolTensor).flatten(0,1).to(target_device)) | |
else: | |
img_features = self.get_img_features(img_embeds.flatten(0, 1)) | |
base_feat_height_target = self.base_feat_height_target | |
base_resolution = self.crop_size | |
base_feat_height_reduction = self.base_feat_height_reduction | |
base_feat_height = base_feat_width = int(np.sqrt(img_features.shape[1])) | |
assert base_feat_height == base_feat_height_target and base_feat_width == base_feat_height_target, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect {base_feat_height_target} features for hd transform' | |
# bs x max_num_crops x (24x24) x C | |
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out) | |
C = self.image_dim_out | |
H = base_feat_height | |
output_imgs = [] | |
output_len = [] | |
# training is tensor, inference is list | |
if isinstance(img_sizes, torch.Tensor): | |
img_sizes = img_sizes.view(-1, 2) | |
for _bs in range(bs): | |
h, w = img_sizes[_bs] | |
h = h // base_resolution | |
w = w // base_resolution | |
B_ = h * w | |
# 1 x (24x24) x 1024 | |
global_img_feature = img_features[_bs, :1] | |
# 1 x 12 x 12 x 4096 | |
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() | |
temp_glb_GN = self.sub_GN.repeat(1, H//base_feat_height_reduction, 1, 1) | |
# 1 x 156 x 4096 | |
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) | |
# (max_num_crops-1) x (12x12) x C | |
sub_img = img_features[_bs, 1:] | |
# 16x574x1024 | |
# get rid of padding sub_img | |
sub_img = sub_img[:B_] | |
# (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024) | |
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() | |
sub_img = sub_img.reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction, -1).permute(0,1,3,2,4,5).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C) | |
if image_attention_mask is not None and len(image_attention_mask) > 0: | |
reshaped_image_attention_mask = image_attention_mask[_bs,1:B_+1,0::2,0::2].reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction).permute(0,1,3,2,4).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction) | |
useful_height = int(reshaped_image_attention_mask[0,:,0].sum().item()) | |
useful_width = int(reshaped_image_attention_mask[0,0,:].sum().item()) | |
sub_img = sub_img[:,:useful_height, :useful_width] | |
temp_sub_GN = self.sub_GN.repeat(1, useful_height, 1, 1) | |
temp_len = int(image_attention_mask[_bs,:B_+1,0::2,0::2].sum().item()) + (useful_height+1) + base_feat_height//base_feat_height_reduction | |
else: | |
temp_sub_GN = self.sub_GN.repeat(1, h*base_feat_height//base_feat_height_reduction, 1, 1) | |
temp_len = int((h*w+1)*self.num_img_tokens+ 1 + (h+1)*base_feat_height//base_feat_height_reduction) | |
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) | |
# (1, num_img_tokens, 1024*4) | |
# glb + sub | |
if self.hd_transform_order == 'glb_sub': | |
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1)) | |
elif self.hd_transform_order == 'sub_glb': | |
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1)) | |
else: | |
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented') | |
#temp_len = int((h*w+1)*144 + 1 + (h+1)*12) | |
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}' | |
output_len.append(temp_len) | |
num_img_tokens = output_len | |
img_set_tensor = [] | |
for _output_img in output_imgs: | |
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype)) | |
img_set_tensor.append(img_feature_proj) | |
#logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}') | |
#assert sum(num_img_tokens) == len(g_values), f'(branch 1) sum(num_img_tokens): {sum(num_img_tokens)}, g_values size: {len(g_values)}, g_values {g_values}' | |
else: | |
raise NotImplementedError | |
select = True | |
else: | |
# # create a fake image tensor | |
# # TODO: need define image size for different vision model | |
if self.training: | |
img_embeds = torch.zeros(1, 3, self.crop_size, self.crop_size, dtype=target_dtype, device=input_ids.device) | |
tt = ( | |
self.get_img_features(img_embeds) | |
.to(target_device) | |
.to(target_dtype) | |
.reshape(-1, 1024) | |
) | |
if self.use_hd_transform: | |
img_set_tensor = self.img_projection(tt.reshape(-1, self.image_dim_out*self.base_feat_height_reduction**2) * self.glb_GN[0] * self.sub_GN[0, 0]) | |
else: | |
img_set_tensor = self.img_projection(tt) # adapted visual features. | |
fake_image_forward = True | |
# we use the token embedding layer from the huggingface model, this is REQUIRED to make sure we are using the loaded weights. | |
hidden_states = kwargs['wte'](input_ids) | |
if select: | |
if hd_transform: | |
# new implementation without in-place operation | |
# Ref: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py#L233 | |
# Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put.html | |
# Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put_.html#torch.Tensor.index_put_ | |
# img_set_tensor: a list of tensors, each tensor has shape (1, N_tokens, C) | |
assert all([_img_set_tensor.shape[0] == 1 for _img_set_tensor in img_set_tensor]), 'img_set_tensor should have shape (1, N_tokens, C)' | |
# Shape: (merged_N_tokens, C) | |
merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0) | |
merged_img_set_tensor = merged_img_set_tensor.to(hidden_states.dtype).to(hidden_states.device) | |
# Temporarily disable autocast to avoid issue on bf16 tensors | |
# Ref: https://github.com/pytorch/pytorch/issues/132715 | |
with torch.autocast(device_type=hidden_states.device.type, enabled=False): | |
new_hidden_states = hidden_states.index_put( | |
indices=positions_tuple, | |
values=merged_img_set_tensor, | |
accumulate=False | |
) | |
hidden_states = new_hidden_states | |
else: | |
raise NotImplementedError | |
if fake_image_forward and self.training: | |
hidden_states = hidden_states + (0 * img_set_tensor[0].to(hidden_states.dtype).to(hidden_states.device)).sum() | |
if self.drop is not None: | |
hidden_states = self.drop(hidden_states) | |
return hidden_states | |
class Phi4MMAudioEmbedding(nn.Module): | |
"""Audio embedding.""" | |
def __init__(self, config: PretrainedConfig, **kwargs) -> None: | |
super().__init__() | |
self.config = config | |
# n_embed or hidden_size for text LM | |
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | |
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | |
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | |
self.drop = nn.Dropout(embd_drop) | |
else: | |
self.drop = None | |
audio_dim_out = None # Set this variable according to the actual audio processor | |
logger.info(f"create audio processor {config.audio_processor}") | |
self.layer_idx = -2 | |
if isinstance(config.audio_processor, dict) and config.audio_processor.get('name', None) == "cascades": | |
encoder_config = config.audio_processor.get("config", None) | |
assert encoder_config is not None | |
self.encoder = ConformerEncoder(**encoder_config) | |
# fake initialization, create encoder_embedding layer only so that | |
# in decoding, all parameters can be loaded in from_pretrained_function | |
# in training, we do post init after from_pretrained function to make sure the correct initialization | |
self.encoder.post_init({}) | |
audio_dim_out = encoder_config["attention_dim"] | |
n_mels = encoder_config["input_size"] | |
else: | |
raise NotImplementedError | |
assert audio_dim_out is not None, "Remember to set values for audio_dim_out" | |
self.audio_dim_out = audio_dim_out | |
self.audio_dim_in = n_mels | |
self.freeze_audio_processor = kwargs.get('freeze_audio_processor', False) | |
logger.info(f'freeze_audio_processor = {self.freeze_audio_processor}') | |
self.downsample_rate = kwargs.get('downsample_rate', 1) | |
enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) | |
if enable_gradient_checkpointing: | |
self.encoder.gradient_checkpointing_enable() | |
logger.info(f'gradient checkpointing enabled for audio processor') | |
projection_cls = kwargs.get('projection_cls', 'linear') | |
if projection_cls == 'linear': | |
self.audio_projection = nn.Linear(audio_dim_out, hidden_size) | |
elif projection_cls == 'mlp': | |
# follow llava-v1.5's implementation | |
# (do not use image_projection and image_proj_norm) | |
dim_projection = hidden_size | |
depth = 2 | |
self.linear_downsample_rate = self.downsample_rate | |
layers_for_speech = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] | |
for _ in range(1, depth): | |
layers_for_speech.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) | |
audio_projection_for_speech = nn.Sequential(*layers_for_speech) | |
layers_for_vision = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] | |
for _ in range(1, depth): | |
layers_for_vision.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) | |
audio_projection_for_vision = nn.Sequential(*layers_for_vision) | |
self.audio_projection = nn.ModuleDict({ | |
'speech': audio_projection_for_speech, | |
'vision': audio_projection_for_vision | |
}) | |
else: | |
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | |
self.vocab_size = config.vocab_size | |
self.input_embeds = None | |
self.audio_embed_sizes = None | |
def post_init(self, audio_config): | |
# execute after the from_pretrained() initialization of the phi4mm model | |
if audio_config.get('name', None) == "cascades": | |
init_model_config = audio_config.get("init_model", {}) | |
self.encoder.post_init(init_model_config) | |
# remove the init model in config so it is not saved in the config. | |
# This might affect the model loading in resuming training and decoding. | |
if "init_model" in audio_config: | |
audio_config.pop("init_model") | |
def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None: | |
self.input_embeds = input_embeds | |
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: | |
self.audio_embed_sizes = audio_embed_sizes | |
def get_audio_features(self, input_embeds: torch.FloatTensor, audio_attention_mask: torch.Tensor, audio_projection_mode: str='speech'): | |
if self.freeze_audio_processor: | |
with torch.no_grad(): | |
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) | |
else: | |
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) | |
if isinstance(self.audio_projection, nn.Sequential): | |
audio_set_tensor = self.audio_projection(audio_features) | |
elif isinstance(self.audio_projection, nn.ModuleDict): | |
audio_set_tensor = self.audio_projection[audio_projection_mode](audio_features) | |
else: | |
raise NotImplementedError | |
return audio_set_tensor | |
def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, audio_embed_sizes=None, audio_attention_mask=None, audio_projection_mode='speech', **kwargs) -> torch.FloatTensor: | |
''' | |
arguments: | |
input_ids: input text ids (B, U) | |
input_embeds: audio features (B, T, D) B: num audios in a sequence | |
''' | |
if self.input_embeds is not None: | |
input_embeds = self.input_embeds.clone() | |
if self.audio_embed_sizes is not None: | |
audio_embed_sizes = self.audio_embed_sizes.clone() | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
MAX_INPUT_ID = int(1e9) | |
with torch.no_grad(): | |
positions = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=False) | |
positions_tuple = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=True) | |
if isinstance(self.audio_projection, nn.Sequential): | |
target_device = self.audio_projection[0].bias.device | |
target_dtype = self.audio_projection[0].bias.dtype | |
elif isinstance(self.audio_projection, nn.ModuleDict): | |
target_device = self.audio_projection[audio_projection_mode][0].bias.device | |
target_dtype = self.audio_projection[audio_projection_mode][0].bias.dtype | |
else: # It's a single nn.Linear layer | |
target_device = self.audio_projection.bias.device | |
target_dtype = self.audio_projection.bias.dtype | |
if input_embeds is not None: | |
input_embeds = input_embeds.to(target_device).to(target_dtype) | |
if len(positions.tolist()) > 0: | |
audio_set_tensor = self.get_audio_features(input_embeds, audio_attention_mask, audio_projection_mode) | |
else: | |
# # create an audio tensor | |
# To do: not sure if this is required for text only input | |
if self.training: | |
audio_embeds = torch.zeros(1, 500, self.audio_dim_in).to(target_device).to(target_dtype) | |
audio_attention_mask = audio_embeds.new_ones(audio_embeds.size()[:2]).long() | |
audio_set_tensor = self.get_audio_features(audio_embeds, audio_attention_mask, audio_projection_mode) | |
hidden_states = kwargs['wte'](input_ids) | |
if len(positions.tolist()) > 0: | |
assert audio_embed_sizes.sum().item() == len(positions), \ | |
f"please ensure the encoder outputs have the same length as defined in input_ids! \n audio_embed_sizes.sum().item(): {audio_embed_sizes.sum().item()} \n len(positions): {len(positions)} \n audio_embed_sizes: {audio_embed_sizes} \n positions: {positions} \n input_ids.shape \n {input_ids.shape}" | |
# new implementation without in-place operation | |
# Ref: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/4a0d683eba9f1d0cbfb6151705d1ee73c25a80ca/modeling_phi3_v.py#L233 | |
# Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put.html | |
# Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.index_put_.html#torch.Tensor.index_put_ | |
# audio_set_tensor: shape (N_audios, N_padded_tokens, C) | |
# Shape: (merged_N_tokens, C) | |
merged_audio_set_tensor = torch.cat([ | |
audio_set_tensor[i, :audio_embed_sizes[i], :] | |
for i in range(len(audio_embed_sizes)) | |
], dim=0) | |
merged_audio_set_tensor = merged_audio_set_tensor.to(hidden_states.dtype).to(hidden_states.device) | |
# Temporarily disable autocast to avoid issue on bf16 tensors | |
# Ref: https://github.com/pytorch/pytorch/issues/132715 | |
with torch.autocast(device_type=hidden_states.device.type, enabled=False): | |
new_hidden_states = hidden_states.index_put( | |
indices=positions_tuple, | |
values=merged_audio_set_tensor, | |
accumulate=False | |
) | |
hidden_states = new_hidden_states | |
else: | |
if self.training: | |
hidden_states = hidden_states + (0 * audio_set_tensor[:,0].to(hidden_states.dtype).to(hidden_states.device)).sum() | |
if self.drop is not None: | |
hidden_states = self.drop(hidden_states) | |
return hidden_states | |
class Phi4MMImageAudioEmbedding(nn.Module): | |
"""Image-audio embedding.""" | |
def __init__(self, config: PretrainedConfig, **kwargs) -> None: | |
super().__init__() | |
self.vocab_size = config.vocab_size | |
self.image_input_id = kwargs.get('image_input_id', -1) | |
self.audio_input_id = kwargs.get('audio_input_id', -10000) | |
assert self.image_input_id != self.audio_input_id, 'image_input_id and audio_input_id should be different' | |
self.image_embd_layer_kwargs = kwargs['image_embd_layer'] | |
self.image_embed = Phi4MMImageEmbedding(config, **self.image_embd_layer_kwargs) | |
self.audio_embd_layer_kwargs = kwargs['audio_embd_layer'] | |
self.audio_embed = Phi4MMAudioEmbedding(config, **self.audio_embd_layer_kwargs) | |
self.input_image_embeds = None | |
self.image_sizes = None | |
self.image_attention_mask = None | |
self.input_audio_embeds = None | |
self.audio_embed_sizes = None | |
def post_init(self, audio_config): | |
# post init for audio embedding | |
# ref: model.model.embed_tokens_extend.post_init(audio_config) in phyagi/getters/model.py | |
self.audio_embed.post_init(audio_config) | |
def set_input_image_embeds(self, input_image_embeds: torch.FloatTensor) -> None: | |
self.input_image_embeds = input_image_embeds | |
def set_image_sizes(self, image_sizes: torch.LongTensor) -> None: | |
self.image_sizes = image_sizes | |
def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: | |
self.image_attention_mask = image_attention_mask | |
def set_input_audio_embeds(self, input_audio_embeds: torch.FloatTensor) -> None: | |
self.input_audio_embeds = input_audio_embeds | |
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: | |
self.audio_embed_sizes = audio_embed_sizes | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
input_embeds, | |
input_image_embeds: Optional[torch.FloatTensor]=None, | |
input_audio_embeds: Optional[torch.FloatTensor]=None, | |
image_sizes=None, | |
image_attention_mask=None, | |
audio_embed_sizes=None, | |
audio_attention_mask=None, | |
audio_projection_mode='speech', | |
wte=None, | |
) -> torch.FloatTensor: | |
MAX_INPUT_ID = int(1e9) | |
assert -MAX_INPUT_ID < self.audio_input_id < self.image_input_id | |
# override image and audio embeddings and sizes from object itself | |
# this is for inference | |
# ref: phyagi/eval/utils/text_generation_vision_audio_pipeline.py | |
if self.input_image_embeds is not None: | |
assert input_image_embeds is None | |
input_image_embeds = self.input_image_embeds.clone() | |
# NOTE weijian: set input_image_embeds to None after first call in for eval stage | |
# during evaluation, it will call model's forward() multiple times | |
# the first time input_ids contains the prompt (including <|image_{}|>) and input_embeds exists | |
# from the second time, the input_ids will only contain the generated text | |
# thus, the input_image_embeds is no longer needed | |
self.input_image_embeds = None | |
if self.image_sizes is not None: | |
assert image_sizes is None | |
image_sizes = self.image_sizes | |
if self.input_audio_embeds is not None: | |
assert input_audio_embeds is None | |
input_audio_embeds = self.input_audio_embeds.clone() | |
self.input_audio_embeds = None | |
if self.audio_embed_sizes is not None: | |
assert audio_embed_sizes is None | |
audio_embed_sizes = self.audio_embed_sizes.clone() | |
if self.image_attention_mask is not None: | |
assert image_attention_mask is None | |
image_attention_mask = self.image_attention_mask.clone() | |
self.image_attention_mask = None | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
# backward compatibility | |
with torch.no_grad(): | |
new_input_ids = input_ids.clone() | |
new_input_ids[(input_ids >= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[0]) & | |
(input_ids <= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[1])] = _IMAGE_SPECIAL_TOKEN_ID | |
new_input_ids[(input_ids >= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[0]) & | |
(input_ids <= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[1])] = _AUDIO_SPECIAL_TOKEN_ID | |
input_ids = new_input_ids | |
with torch.no_grad(): | |
image_position_mask = input_ids == _IMAGE_SPECIAL_TOKEN_ID | |
non_image_position_mask = ~image_position_mask | |
assert input_embeds is None | |
if self.training: | |
assert input_image_embeds is not None or input_audio_embeds is not None | |
if input_image_embeds is not None: | |
image_hidden_states = self.image_embed( | |
input_ids=input_ids, | |
input_embeds=input_image_embeds, | |
image_sizes=image_sizes, | |
wte=wte, | |
image_attention_mask=image_attention_mask | |
) | |
if input_audio_embeds is not None: | |
audio_hidden_states = self.audio_embed( | |
input_ids=input_ids, | |
input_embeds=input_audio_embeds, | |
audio_embed_sizes=audio_embed_sizes, | |
audio_attention_mask=audio_attention_mask, | |
wte=wte, | |
audio_projection_mode=audio_projection_mode, | |
) | |
# merge image and audio hidden states | |
# NOTE weijian: for non-image-audio tokens, here we use audio hidden states | |
# actually, in the debug code above, the non-image-audio tokens from image_hidden_states and audio_hidden_states should be the same | |
if input_image_embeds is not None and input_audio_embeds is not None: | |
dtype = image_hidden_states.dtype | |
hidden_states = image_hidden_states * image_position_mask.to(dtype).unsqueeze(-1) + audio_hidden_states * non_image_position_mask.to(dtype).unsqueeze(-1) | |
elif input_image_embeds is not None: | |
hidden_states = image_hidden_states | |
elif input_audio_embeds is not None: | |
hidden_states = audio_hidden_states | |
else: | |
assert wte is not None | |
hidden_states = wte(input_ids) | |
return hidden_states | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3 | |
class Phi4MMRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Phi4MMRMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3 | |
class Phi4MMRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) | |
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) | |
def forward(self, x, position_ids, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
self.inv_freq.to(x.device) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
class Phi4MMSuScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | |
def __init__(self, dim, config, device=None): | |
warnings.warn( | |
"The class Phi4MMSuScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers. Please" | |
" use Phi4MMLongRoPEScaledRotaryEmbedding instead.", | |
FutureWarning, | |
) | |
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | |
self.short_factor = config.rope_scaling["short_factor"] | |
self.long_factor = config.rope_scaling["long_factor"] | |
self.original_max_position_embeddings = config.original_max_position_embeddings | |
def forward(self, x, position_ids, seq_len=None): | |
seq_len = torch.max(position_ids) + 1 | |
if seq_len > self.original_max_position_embeddings: | |
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | |
else: | |
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | |
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | |
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
scale = self.max_position_embeddings / self.original_max_position_embeddings | |
if scale <= 1.0: | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | |
cos = emb.cos() * scaling_factor | |
sin = emb.sin() * scaling_factor | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
class Phi4MMYarnScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | |
def __init__(self, dim, config, device=None): | |
warnings.warn( | |
"The class Phi4MMYarnScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers", | |
FutureWarning, | |
) | |
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | |
self.short_factor = config.rope_scaling["short_factor"] | |
self.long_factor = config.rope_scaling["long_factor"] | |
self.original_max_position_embeddings = config.original_max_position_embeddings | |
def forward(self, x, position_ids, seq_len=None): | |
seq_len = torch.max(position_ids) + 1 | |
if seq_len > self.original_max_position_embeddings: | |
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | |
else: | |
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | |
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | |
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
scale = self.max_position_embeddings / self.original_max_position_embeddings | |
if scale <= 1.0: | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = 0.1 * math.log(scale) + 1.0 | |
cos = emb.cos() * scaling_factor | |
sin = emb.sin() * scaling_factor | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
class Phi4MMLongRoPEScaledRotaryEmbedding(Phi4MMRotaryEmbedding): | |
def __init__(self, dim, config, device=None): | |
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | |
self.short_factor = config.rope_scaling["short_factor"] | |
self.long_factor = config.rope_scaling["long_factor"] | |
self.original_max_position_embeddings = config.original_max_position_embeddings | |
def forward(self, x, position_ids, seq_len=None): | |
seq_len = seq_len or torch.max(position_ids) + 1 | |
if seq_len > self.original_max_position_embeddings: | |
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | |
else: | |
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | |
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | |
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :].float() | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = x.device.type | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
scale = self.max_position_embeddings / self.original_max_position_embeddings | |
if scale <= 1.0: | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | |
cos = emb.cos() * scaling_factor | |
sin = emb.sin() * scaling_factor | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
rotary_dim = cos.shape[-1] | |
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] | |
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] | |
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1) | |
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1) | |
return q_embed, k_embed | |
class Phi4MMMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.activation_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
up_states = self.gate_up_proj(hidden_states) | |
gate, up_states = up_states.chunk(2, dim=-1) | |
up_states = up_states * self.activation_fn(gate) | |
return self.down_proj(up_states) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class Phi4MMAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: Phi4MMConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.attention_dropout = config.attention_dropout | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.original_max_position_embeddings = config.original_max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.rope_scaling = config.rope_scaling | |
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) | |
self.is_causal = True | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) | |
self._init_rope() | |
def _init_rope(self): | |
if self.rope_scaling is None: | |
self.rotary_emb = Phi4MMRotaryEmbedding( | |
self.rotary_ndims, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
if scaling_type == "longrope": | |
self.rotary_emb = Phi4MMLongRoPEScaledRotaryEmbedding(self.rotary_ndims, self.config) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") | |
bsz, q_len, _ = hidden_states.size() | |
qkv = self.qkv_proj(hidden_states) | |
query_pos = self.num_heads * self.head_dim | |
query_states = qkv[..., :query_pos] | |
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | |
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights += causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class Phi4MMFlashAttention2(Phi4MMAttention): | |
""" | |
Phi-4-MM flash attention module. This module inherits from `Phi4MMAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# Phi4MMFlashAttention2 attention does not support output_attentions | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
qkv = self.qkv_proj(hidden_states) | |
query_pos = self.num_heads * self.head_dim | |
query_states = qkv[..., :query_pos] | |
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | |
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# Because the input can be padded, the absolute sequence length depends on the max position id. | |
rotary_seq_len = ( | |
max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len | |
) | |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len, position_ids=position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_dropout = self.attention_dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. | |
if query_states.dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.qkv_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
position_ids=position_ids, | |
dropout=attn_dropout, | |
sliding_window=getattr(self.config, "sliding_window", None), | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
is_causal=self.is_causal, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi | |
# TODO @Arthur no longer copied from LLama after static cache | |
class Phi4MMSdpaAttention(Phi4MMAttention): | |
""" | |
Phi4MM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
`Phi4MMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
SDPA API. | |
""" | |
# Adapted from Phi4MMAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"Phi4MMModel is using Phi4MMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
qkv = self.qkv_proj(hidden_states) | |
query_pos = self.num_heads * self.head_dim | |
query_states = qkv[..., :query_pos] | |
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | |
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
causal_mask = attention_mask | |
if attention_mask is not None: | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == "cuda" and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal = True if causal_mask is None and q_len > 1 else False | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
PHI4MM_ATTENTION_CLASSES = { | |
"eager": Phi4MMAttention, | |
"flash_attention_2": Phi4MMFlashAttention2, | |
"sdpa": Phi4MMSdpaAttention, | |
} | |
class Phi4MMDecoderLayer(nn.Module): | |
def __init__(self, config: Phi4MMConfig, layer_idx: int): | |
super().__init__() | |
self.config = config | |
self.self_attn = PHI4MM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | |
self.mlp = Phi4MMMLP(config) | |
self.input_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) | |
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) | |
self.post_attention_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | |
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence | |
kwargs (`dict`, *optional*): | |
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | |
into the model | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
attn_outputs, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = residual + self.resid_attn_dropout(attn_outputs) | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + self.resid_mlp_dropout(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
PHI4MM_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Phi4MMConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Phi4MMPreTrainedModel(PreTrainedModel): | |
config_class = Phi4MMConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Phi4MMDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
_version = "0.0.5" | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
PHI4MM_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance, see our | |
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | |
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | |
the complete sequence length. | |
""" | |
class Phi4MMModel(Phi4MMPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MMDecoderLayer`] | |
Args: | |
config: Phi4MMConfig | |
""" | |
def __init__(self, config: Phi4MMConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.embed_dropout = nn.Dropout(config.embd_pdrop) | |
self.embed_tokens_extend = None | |
if isinstance(config.embd_layer, dict): | |
embedding_config = { | |
'embedding_cls': config.embd_layer['embedding_cls'], | |
**config.embd_layer | |
} | |
self.embed_tokens_extend = Phi4MMImageAudioEmbedding(config, **embedding_config) | |
self.layers = nn.ModuleList( | |
[Phi4MMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self._attn_implementation = config._attn_implementation | |
self.norm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
input_image_embeds: Optional[torch.FloatTensor] = None, | |
image_sizes: Optional[torch.LongTensor] = None, | |
image_attention_mask=None, | |
input_audio_embeds: Optional[torch.FloatTensor] = None, | |
audio_embed_sizes=None, | |
audio_attention_mask=None, | |
audio_projection_mode=None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# kept for BC (non `Cache` `past_key_values` inputs) | |
return_legacy_cache = False | |
if use_cache and not isinstance(past_key_values, Cache): | |
return_legacy_cache = True | |
if past_key_values is None: | |
past_key_values = DynamicCache() | |
else: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
logger.warning_once( | |
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " | |
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " | |
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" | |
) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens_extend( | |
input_ids=input_ids, | |
input_embeds=inputs_embeds, | |
input_image_embeds=input_image_embeds, | |
input_audio_embeds=input_audio_embeds, | |
image_sizes=image_sizes, | |
image_attention_mask=image_attention_mask, | |
audio_embed_sizes=audio_embed_sizes, | |
audio_attention_mask=audio_attention_mask, | |
audio_projection_mode=audio_projection_mode, | |
wte=self.embed_tokens, | |
) | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
causal_mask = self._update_causal_mask( | |
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
causal_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if return_legacy_cache: | |
next_cache = next_cache.to_legacy_cache() | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and not (using_static_cache or using_sliding_window_cache) | |
and not output_attentions | |
): | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
sliding_window=self.config.sliding_window, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
# SlidingWindowCache or StaticCache | |
if using_sliding_window_cache or using_static_cache: | |
target_length = past_key_values.get_max_cache_shape() | |
# DynamicCache or no cache | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
config=self.config, | |
past_key_values=past_key_values, | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
# Copied from transformers.models.mistral.modeling_mistral.MistralModel._prepare_4d_causal_attention_mask_with_cache_position with Mistral->Phi3 | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
config: Phi4MMConfig, | |
past_key_values: Cache, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
config (`Phi4MMConfig`): | |
The model's configuration class | |
past_key_values (`Cache`): | |
The cache class that is being used currently to generate | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
min_dtype = torch.finfo(dtype).min | |
causal_mask = torch.full( | |
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | |
) | |
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
if config.sliding_window is not None: | |
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also | |
# the check is needed to verify is current checkpoint was trained with sliding window or not | |
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: | |
sliding_attend_mask = torch.arange(target_length, device=device) <= ( | |
cache_position.reshape(-1, 1) - config.sliding_window | |
) | |
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) | |
causal_mask *= diagonal_attend_mask | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
if attention_mask.shape[-1] > target_length: | |
attention_mask = attention_mask[:, :target_length] | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
return causal_mask | |
def prepare_inputs_for_generation(): | |
""" | |
Placeholder for the `prepare_inputs_for_generation` method. | |
This function is part of the `GenerationMixin` and is added to the `Phi4MMModel` | |
class to prevent the model from breaking due to the AttributeError. | |
""" | |
pass | |
class Phi4MMForCausalLM(Phi4MMPreTrainedModel, GenerationMixin): | |
_tied_weights_keys = ["lm_head.weight"] | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = Phi4MMModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# LoRA related settings | |
assert getattr(config, "vision_lora", None) is not None | |
from peft import LoraConfig, get_peft_model | |
vision_lora_config = LoraConfig( | |
r=config.vision_lora['r'], | |
lora_alpha=config.vision_lora['lora_alpha'], | |
target_modules=config.vision_lora['layer'], | |
lora_dropout=config.vision_lora['dp'], | |
task_type="CAUSAL_LM", | |
) | |
peft_model = get_peft_model(self.model, vision_lora_config, adapter_name="vision") | |
self.config.vision_lora['r'] = config.vision_lora['r'] | |
self.config.vision_lora['lora_alpha'] = config.vision_lora['lora_alpha'] | |
self.config.vision_lora['layer'] = config.vision_lora['layer'] | |
self.config.vision_lora['dp'] = config.vision_lora['dp'] | |
assert getattr(config, "speech_lora", None) is not None | |
speech_lora_config = LoraConfig( | |
r=config.speech_lora['r'], | |
lora_alpha=config.speech_lora['lora_alpha'], | |
target_modules=config.speech_lora['layer'], | |
lora_dropout=config.speech_lora['dp'], | |
task_type="CAUSAL_LM", | |
) | |
peft_model.base_model.active_adapter.append("speech") | |
peft_model.add_adapter("speech", speech_lora_config) | |
self.config.speech_lora['r'] = config.speech_lora['r'] | |
self.config.speech_lora['lora_alpha'] = config.speech_lora['lora_alpha'] | |
self.config.speech_lora['layer'] = config.speech_lora['layer'] | |
self.config.speech_lora['dp'] = config.speech_lora['dp'] | |
def set_lora_adapter(self, adapter_name) -> None: | |
from peft.tuners.lora.layer import LoraLayer | |
for module in self.modules(): | |
if isinstance(module, LoraLayer): | |
if module.merged: | |
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") | |
module.unmerge() | |
module.set_adapter(adapter_name) | |
module._disable_adapters = False | |
def unset_lora_adapter(self) -> None: | |
# Ref: peft/tuners/tuners_utils.py - enable_adapters() | |
# Ref: peft/tuners/lora/layer.py | |
from peft.tuners.lora.layer import LoraLayer | |
for module in self.modules(): | |
if isinstance(module, LoraLayer): | |
# disable grads on all adapter layers | |
# TODO weijian: may use enable_adapters() instead | |
for layer_name in module.adapter_layer_names: | |
layer = getattr(module, layer_name) | |
layer.requires_grad_(False) | |
module._disable_adapters = True | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder | |
def set_decoder(self, decoder): | |
self.model = decoder | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder | |
def get_decoder(self): | |
return self.model | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
input_image_embeds: Optional[torch.FloatTensor] = None, | |
image_sizes: Optional[torch.LongTensor] = None, | |
image_attention_mask=None, | |
input_audio_embeds: Optional[torch.FloatTensor] = None, | |
audio_embed_sizes=None, | |
audio_attention_mask=None, | |
input_mode=None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
num_logits_to_keep: int = 0, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
num_logits_to_keep (`int`, *optional*): | |
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all | |
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that | |
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, Phi4MMForCausalLM | |
>>> model = Phi4MMForCausalLM.from_pretrained("TBA") | |
>>> tokenizer = AutoTokenizer.from_pretrained("TBA") | |
>>> prompt = "This is an example script ." | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' | |
```""" | |
if ( | |
use_cache | |
and self.config.rope_scaling | |
and cache_position is not None | |
and cache_position[0] == self.config.original_max_position_embeddings | |
): | |
logger.warning( | |
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed." | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if isinstance(input_mode, torch.Tensor): | |
# len(input_mode) == num_beams in beam search, and all elements of input_mode should have the same value | |
input_mode = input_mode[0].item() | |
input_mode = InputMode(input_mode) | |
if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]: | |
self.set_lora_adapter('vision') | |
audio_projection_mode = 'vision' | |
elif input_mode == InputMode.SPEECH: | |
self.set_lora_adapter('speech') | |
audio_projection_mode = 'speech' | |
elif input_mode == InputMode.LANGUAGE: | |
self.unset_lora_adapter() | |
audio_projection_mode = 'speech' | |
else: | |
raise ValueError(f"Invalid input_mode: {input_mode}") | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
input_image_embeds=input_image_embeds, | |
image_sizes=image_sizes, | |
image_attention_mask=image_attention_mask, | |
input_audio_embeds=input_audio_embeds, | |
audio_embed_sizes=audio_embed_sizes, | |
audio_attention_mask=audio_attention_mask, | |
audio_projection_mode=audio_projection_mode, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
if num_logits_to_keep is None: | |
num_logits_to_keep = hidden_states.size(1) | |
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) | |
loss = None | |
if labels is not None: | |
loss = self.loss_function(logits, labels, self.vocab_size) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
input_image_embeds=None, | |
image_sizes=None, | |
image_attention_mask=None, | |
input_audio_embeds=None, | |
audio_embed_sizes=None, | |
audio_attention_mask=None, | |
input_mode=None, | |
cache_position=None, | |
position_ids=None, | |
use_cache=True, | |
num_logits_to_keep=None, | |
**kwargs | |
): | |
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the | |
# process | |
# When the first time input length reached long and short factor switching point, enforce re-compute cache | |
# It will cause downside of slower at this single token position, however, better than current failure. | |
if ( | |
past_key_values | |
and self.config.rope_scaling | |
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 | |
): | |
past_length = cache_position[0] | |
if past_length <= self.config.original_max_position_embeddings: | |
past_key_values = None | |
model_inputs = super().prepare_inputs_for_generation( | |
input_ids=input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
input_image_embeds=input_image_embeds, | |
image_sizes=image_sizes, | |
image_attention_mask=image_attention_mask, | |
input_audio_embeds=input_audio_embeds, | |
audio_embed_sizes=audio_embed_sizes, | |
audio_attention_mask=audio_attention_mask, | |
input_mode=input_mode, | |
cache_position=cache_position, | |
position_ids=position_ids, | |
use_cache=use_cache, | |
num_logits_to_keep=num_logits_to_keep, | |
**kwargs, | |
) | |
return model_inputs | |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi, LLAMA->PHI, self.transformer->self.model, transformer_outputs->model_outputs | |
class Phi4MMForSequenceClassification(Phi4MMPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = Phi4MMModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
model_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = model_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) | |
if not return_dict: | |
output = (pooled_logits,) + model_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=model_outputs.past_key_values, | |
hidden_states=model_outputs.hidden_states, | |
attentions=model_outputs.attentions, | |
) | |
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi,MPT->PHI,self.transformer->self.model,transformer_outputs->model_outputs | |
class Phi4MMForTokenClassification(Phi4MMPreTrainedModel): | |
def __init__(self, config: Phi4MMConfig): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = Phi4MMModel(config) | |
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
classifier_dropout = config.classifier_dropout | |
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
classifier_dropout = config.hidden_dropout | |
else: | |
classifier_dropout = 0.1 | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
**deprecated_arguments, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
model_outputs = self.model( | |
input_ids, | |
past_key_values=past_key_values, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = model_outputs[0] | |
hidden_states = self.dropout(hidden_states) | |
logits = self.classifier(hidden_states) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
batch_size, seq_length = labels.shape | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | |
) | |
if not return_dict: | |
output = (logits,) + model_outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=model_outputs.hidden_states, | |
attentions=model_outputs.attentions, | |
) | |
AutoConfig.register("phi4mm", Phi4MMConfig) | |
AutoModelForCausalLM.register(Phi4MMConfig, Phi4MMForCausalLM) | |
Phi4MMConfig.register_for_auto_class() | |
Phi4MMForCausalLM.register_for_auto_class("AutoModelForCausalLM") | |