matthieulel commited on
Commit
7019ad6
·
verified ·
1 Parent(s): 44de0c5

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals-finetuned-galaxy_mnist
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals-finetuned-galaxy_mnist
20
+
21
+ This model is a fine-tuned version of [matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals](https://huggingface.co/matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1862
24
+ - Accuracy: 0.941
25
+ - Precision: 0.9410
26
+ - Recall: 0.941
27
+ - F1: 0.9410
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-06
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.8616 | 0.99 | 31 | 0.4898 | 0.8345 | 0.8394 | 0.8345 | 0.8342 |
62
+ | 0.3162 | 1.98 | 62 | 0.1963 | 0.921 | 0.9217 | 0.921 | 0.9210 |
63
+ | 0.2596 | 2.98 | 93 | 0.1666 | 0.9315 | 0.9322 | 0.9315 | 0.9313 |
64
+ | 0.2237 | 4.0 | 125 | 0.1579 | 0.9385 | 0.9386 | 0.9385 | 0.9385 |
65
+ | 0.2304 | 4.99 | 156 | 0.1631 | 0.936 | 0.9364 | 0.936 | 0.9361 |
66
+ | 0.2096 | 5.98 | 187 | 0.1686 | 0.933 | 0.9341 | 0.933 | 0.9329 |
67
+ | 0.1935 | 6.98 | 218 | 0.1660 | 0.934 | 0.9341 | 0.934 | 0.9339 |
68
+ | 0.1829 | 8.0 | 250 | 0.1596 | 0.9415 | 0.9418 | 0.9415 | 0.9415 |
69
+ | 0.178 | 8.99 | 281 | 0.1613 | 0.937 | 0.9381 | 0.937 | 0.9370 |
70
+ | 0.158 | 9.98 | 312 | 0.1697 | 0.9335 | 0.9358 | 0.9335 | 0.9334 |
71
+ | 0.1767 | 10.98 | 343 | 0.1653 | 0.935 | 0.9350 | 0.935 | 0.9349 |
72
+ | 0.176 | 12.0 | 375 | 0.1752 | 0.936 | 0.9375 | 0.936 | 0.9357 |
73
+ | 0.1563 | 12.99 | 406 | 0.1892 | 0.932 | 0.9339 | 0.932 | 0.9319 |
74
+ | 0.1499 | 13.98 | 437 | 0.1946 | 0.9345 | 0.9353 | 0.9345 | 0.9344 |
75
+ | 0.1388 | 14.98 | 468 | 0.1763 | 0.937 | 0.9371 | 0.937 | 0.9370 |
76
+ | 0.1418 | 16.0 | 500 | 0.1875 | 0.9375 | 0.9390 | 0.9375 | 0.9375 |
77
+ | 0.1332 | 16.99 | 531 | 0.1769 | 0.9365 | 0.9364 | 0.9365 | 0.9364 |
78
+ | 0.1413 | 17.98 | 562 | 0.1851 | 0.9355 | 0.9363 | 0.9355 | 0.9355 |
79
+ | 0.1363 | 18.98 | 593 | 0.1834 | 0.943 | 0.9430 | 0.943 | 0.9430 |
80
+ | 0.1454 | 20.0 | 625 | 0.1823 | 0.938 | 0.9384 | 0.938 | 0.9380 |
81
+ | 0.1369 | 20.99 | 656 | 0.1834 | 0.938 | 0.9380 | 0.938 | 0.9380 |
82
+ | 0.1298 | 21.98 | 687 | 0.1960 | 0.932 | 0.9335 | 0.932 | 0.9318 |
83
+ | 0.1215 | 22.98 | 718 | 0.1756 | 0.941 | 0.9410 | 0.941 | 0.9410 |
84
+ | 0.1206 | 24.0 | 750 | 0.1917 | 0.9395 | 0.9397 | 0.9395 | 0.9394 |
85
+ | 0.1173 | 24.99 | 781 | 0.1873 | 0.937 | 0.9370 | 0.937 | 0.9370 |
86
+ | 0.1071 | 25.98 | 812 | 0.1856 | 0.9375 | 0.9376 | 0.9375 | 0.9375 |
87
+ | 0.1259 | 26.98 | 843 | 0.1871 | 0.938 | 0.9380 | 0.938 | 0.9380 |
88
+ | 0.1245 | 28.0 | 875 | 0.1866 | 0.9395 | 0.9396 | 0.9395 | 0.9395 |
89
+ | 0.1065 | 28.99 | 906 | 0.1870 | 0.94 | 0.9401 | 0.94 | 0.9400 |
90
+ | 0.1066 | 29.76 | 930 | 0.1862 | 0.941 | 0.9410 | 0.941 | 0.9410 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fdc79b79dc1e488a2ad5240a8d29bed22f855cdd61977a3ac0248f937eaaef5c
3
  size 346372224
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37d71a8bac05f7b13677f793ed558120073f0d2e62261aab8608d9596c08e941
3
  size 346372224