|
|
|
import os |
|
import gc |
|
import torch |
|
from PIL.Image import Image |
|
from dataclasses import dataclass |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, FluxTransformer2DModel |
|
from transformers import T5EncoderModel |
|
from huggingface_hub.constants import HF_HUB_CACHE |
|
from torchao.quantization import quantize_, int8_weight_only, float8_weight_only |
|
from caching import apply_cache_on_pipe |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
|
|
|
|
@dataclass |
|
class Config: |
|
CKPT_ID: str = "black-forest-labs/FLUX.1-schnell" |
|
CKPT_REVISION: str = "741f7c3ce8b383c54771c7003378a50191e9efe9" |
|
DEVICE: str = "cuda" |
|
DTYPE = torch.bfloat16 |
|
PYTORCH_CUDA_ALLOC_CONF: str = "expandable_segments:True" |
|
|
|
def _initialize_environment(): |
|
"""Set up PyTorch and CUDA environment variables for optimal performance.""" |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.benchmark = True |
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = Config.PYTORCH_CUDA_ALLOC_CONF |
|
|
|
def _clear_gpu_memory(): |
|
"""Free up GPU memory to prevent memory-related issues.""" |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def _load_text_encoder_model(): |
|
"""Load the text encoder model with specified configuration.""" |
|
return T5EncoderModel.from_pretrained( |
|
"city96/t5-v1_1-xxl-encoder-bf16", |
|
revision="1b9c856aadb864af93c1dcdc226c2774fa67bc86", |
|
torch_dtype=Config.DTYPE |
|
).to(memory_format=torch.channels_last) |
|
|
|
def _load_vae_model(): |
|
"""Load the variational autoencoder (VAE) model with specified configuration.""" |
|
return AutoencoderTiny.from_pretrained( |
|
"manbeast3b/FLUX.1-schnell-taef1-float8", |
|
revision="7c538d53ec698509788ed88b1305c6bb019bdb4d", |
|
torch_dtype=Config.DTYPE |
|
) |
|
|
|
def _load_transformer_model(): |
|
"""Load the transformer model from a specific cached path.""" |
|
|
|
|
|
|
|
|
|
transformer_path = os.path.join( |
|
HF_HUB_CACHE, |
|
"models--manbeast3b--flux.1-schnell-full1/snapshots/cb1b599b0d712b9aab2c4df3ad27b050a27ec146", |
|
"transformer" |
|
) |
|
return FluxTransformer2DModel.from_pretrained( |
|
transformer_path, |
|
torch_dtype=Config.DTYPE, |
|
use_safetensors=False |
|
).to(memory_format=torch.channels_last) |
|
|
|
def _warmup_pipeline(pipeline): |
|
"""Warm up the pipeline by running it with an empty prompt to initialize internal caches.""" |
|
for _ in range(3): |
|
pipeline(prompt=" ") |
|
|
|
def load_pipeline(): |
|
""" |
|
Load and configure the diffusion pipeline for text-to-image generation. |
|
|
|
Returns: |
|
DiffusionPipeline: The configured pipeline ready for inference. |
|
""" |
|
_clear_gpu_memory() |
|
|
|
|
|
text_encoder = _load_text_encoder_model() |
|
vae = _load_vae_model() |
|
transformer = _load_transformer_model() |
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
Config.CKPT_ID, |
|
vae=vae, |
|
revision=Config.CKPT_REVISION, |
|
transformer=transformer, |
|
text_encoder_2=text_encoder, |
|
torch_dtype=Config.DTYPE, |
|
).to(Config.DEVICE) |
|
|
|
|
|
apply_cache_on_pipe(pipeline) |
|
pipeline.to(memory_format=torch.channels_last) |
|
pipeline.vae = torch.compile(pipeline.vae, mode="max-autotune") |
|
quantize_(pipeline.vae, int8_weight_only()) |
|
quantize_(pipeline.vae, float8_weight_only()) |
|
|
|
|
|
_warmup_pipeline(pipeline) |
|
|
|
return pipeline |
|
|
|
@torch.no_grad() |
|
def infer(request: TextToImageRequest, pipeline: DiffusionPipeline, generator: Generator) -> Image: |
|
""" |
|
Generate an image from a text prompt using the diffusion pipeline. |
|
|
|
Args: |
|
request (TextToImageRequest): The request containing the prompt and image parameters. |
|
pipeline (DiffusionPipeline): The pre-loaded diffusion pipeline. |
|
generator (Generator): The random seed generator for reproducibility. |
|
|
|
Returns: |
|
Image: The generated image in PIL format. |
|
""" |
|
image = pipeline( |
|
prompt=request.prompt, |
|
generator=generator, |
|
guidance_scale=0.0, |
|
num_inference_steps=4, |
|
max_sequence_length=256, |
|
height=request.height, |
|
width=request.width, |
|
output_type="pil" |
|
).images[0] |
|
return image |
|
|
|
|
|
_initialize_environment() |
|
|
|
|
|
load = load_pipeline |