--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: linabot results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0` ```yaml base_model: mistralai/Mistral-Nemo-Instruct-2407 model_type: MistralForCausalLM hub_model_id: Alignment-Lab-AI/linabot strict: false chat_template: tokenizer_default plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true datasets: - path: "./train_data.jsonl" type: chat_template field_messages: messages message_property_mappings: role: role content: content roles_to_train: ['assistant'] train_on_eos: turn learning_rate: 2e-5 lr_scheduler: cosine weight_decay: 0.03 warmup_steps: 450 dataset_prepared_path: val_set_size: 0.2 output_dir: ./outputs/out sequence_len: 10400 sample_packing: true pad_to_sequence_len: true eval_sample_packing: true wandb_project: linabot wandb_entity: wandb_watch: all wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 5 optimizer: adalomo lr_scheduler: cosine learning_rate: 0.0002024 flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true torch_compile_mode: "max-autotune" bf16: auto tf32: false gradient_checkpointing: true resume_from_checkpoint: logging_steps: 1 evals_per_epoch: 8 saves_per_epoch: 1 weight_decay: 0.03 special_tokens: bos_token: "" eos_token: "" pad_token: "" ```

# linabot This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the ./train_data.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.4157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002024 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adalomo and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 450 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4415 | 0.0083 | 1 | 0.5382 | | 0.4958 | 0.125 | 15 | 0.5380 | | 0.371 | 0.25 | 30 | 0.5371 | | 0.4364 | 0.375 | 45 | 0.5347 | | 0.3777 | 0.5 | 60 | 0.5309 | | 0.3962 | 0.625 | 75 | 0.5244 | | 0.3341 | 0.75 | 90 | 0.5168 | | 0.3259 | 0.875 | 105 | 0.5070 | | 0.3238 | 1.0 | 120 | 0.4966 | | 0.36 | 1.125 | 135 | 0.4866 | | 0.264 | 1.25 | 150 | 0.4793 | | 0.3319 | 1.375 | 165 | 0.4714 | | 0.3731 | 1.5 | 180 | 0.4641 | | 0.325 | 1.625 | 195 | 0.4581 | | 0.3477 | 1.75 | 210 | 0.4526 | | 0.2851 | 1.875 | 225 | 0.4481 | | 0.2732 | 2.0 | 240 | 0.4416 | | 0.3367 | 2.125 | 255 | 0.4388 | | 0.2605 | 2.25 | 270 | 0.4366 | | 0.2725 | 2.375 | 285 | 0.4333 | | 0.3374 | 2.5 | 300 | 0.4291 | | 0.275 | 2.625 | 315 | 0.4250 | | 0.1803 | 2.75 | 330 | 0.4214 | | 0.3441 | 2.875 | 345 | 0.4189 | | 0.1505 | 3.0 | 360 | 0.4172 | | 0.2216 | 3.125 | 375 | 0.4186 | | 0.1833 | 3.25 | 390 | 0.4185 | | 0.2586 | 3.375 | 405 | 0.4153 | | 0.1754 | 3.5 | 420 | 0.4152 | | 0.2272 | 3.625 | 435 | 0.4136 | | 0.174 | 3.75 | 450 | 0.4129 | | 0.1794 | 3.875 | 465 | 0.4074 | | 0.1779 | 4.0 | 480 | 0.4086 | | 0.1752 | 4.125 | 495 | 0.4164 | | 0.1745 | 4.25 | 510 | 0.4173 | | 0.1314 | 4.375 | 525 | 0.4158 | | 0.1923 | 4.5 | 540 | 0.4155 | | 0.1848 | 4.625 | 555 | 0.4156 | | 0.1185 | 4.75 | 570 | 0.4155 | | 0.2255 | 4.875 | 585 | 0.4153 | | 0.1841 | 5.0 | 600 | 0.4157 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1