Create README.md
Browse filesRounding of average + Python layout
README.md
CHANGED
@@ -785,7 +785,7 @@ GTE-ModernColBERT has been trained with knowledge distillation on MS MARCO with
|
|
785 |
However, as illustrated in the ModernBERT paper, ColBERT models can generalize to documents lengths way beyond their training length and GTE-ModernColBERT actually yields results way above SOTA in long-context embedding benchmarks, see [LongEmbed results](#longembed-benchmark).
|
786 |
|
787 |
Simply change adapt the document length parameter to your needs when loading the model:
|
788 |
-
```
|
789 |
model = models.ColBERT(
|
790 |
model_name_or_path=lightonai/GTE-ModernColBERT-v1,
|
791 |
document_length=8192,
|
@@ -980,15 +980,15 @@ However, as illustrated in the ModernBERT paper, ColBERT models can generalize t
|
|
980 |
| Model | Mean | LEMBNarrativeQARetrieval | LEMBNeedleRetrieval | LEMBPasskeyRetrieval | LEMBQMSumRetrieval | LEMBSummScreenFDRetrieval | LEMBWikimQARetrieval |
|
981 |
|-----------------------------------------------|-----------|-------------------------|---------------------|----------------------|---------------------|---------------------------|----------------------|
|
982 |
| GTE-ModernColBERT (with 32k document length) | **88.39** | **78.82** | **92.5** | 92 | **72.17** | 94.98 | **99.87** |
|
983 |
-
| voyage-multilingual-2 | 79.
|
984 |
-
| inf-retriever-v1 | 73.
|
985 |
-
| snowflake-arctic-embed-l-v2,0 | 63.
|
986 |
-
| gte-multilingual-base | 62.
|
987 |
-
| jasper_en_vision_language_v1 | 60.
|
988 |
-
| bge-m3 | 58.
|
989 |
-
| jina-embeddings-v3 | 55.
|
990 |
-
| e5-base-4k | 54.
|
991 |
-
| gte-Qwen2-7B-instruct | 47.
|
992 |
|
993 |
|
994 |
ModernBERT itself has only been trained on 8K context length, but it seems that GTE-ModernColBERT can generalize to even bigger context sizes, though it is not guaranteed so please perform your own benches!
|
|
|
785 |
However, as illustrated in the ModernBERT paper, ColBERT models can generalize to documents lengths way beyond their training length and GTE-ModernColBERT actually yields results way above SOTA in long-context embedding benchmarks, see [LongEmbed results](#longembed-benchmark).
|
786 |
|
787 |
Simply change adapt the document length parameter to your needs when loading the model:
|
788 |
+
```python
|
789 |
model = models.ColBERT(
|
790 |
model_name_or_path=lightonai/GTE-ModernColBERT-v1,
|
791 |
document_length=8192,
|
|
|
980 |
| Model | Mean | LEMBNarrativeQARetrieval | LEMBNeedleRetrieval | LEMBPasskeyRetrieval | LEMBQMSumRetrieval | LEMBSummScreenFDRetrieval | LEMBWikimQARetrieval |
|
981 |
|-----------------------------------------------|-----------|-------------------------|---------------------|----------------------|---------------------|---------------------------|----------------------|
|
982 |
| GTE-ModernColBERT (with 32k document length) | **88.39** | **78.82** | **92.5** | 92 | **72.17** | 94.98 | **99.87** |
|
983 |
+
| voyage-multilingual-2 | 79.17| 64.694 | 75.25 | **97** | 51.495 | **99.105** | 87.489 |
|
984 |
+
| inf-retriever-v1 | 73.19 | 60.702 | 61.5 | 78.75 | 55.072 | 97.387 | 85.751 |
|
985 |
+
| snowflake-arctic-embed-l-v2,0 | 63.73 | 43.632 | 50.25 | 77.25 | 40.04 | 96.383 | 74.843 |
|
986 |
+
| gte-multilingual-base | 62.12| 52.358 | 42.25 | 55.5 | 43.033 | 95.499 | 84.078 |
|
987 |
+
| jasper_en_vision_language_v1 | 60.93 | 37.928 | 55 | 62.25 | 41.186 | 97.206 | 72.025 |
|
988 |
+
| bge-m3 | 58.73 | 45.761 | 40.25 | 59 | 35.543 | 94.089 | 77.726 |
|
989 |
+
| jina-embeddings-v3 | 55.66| 34.297 | 64 | 38 | 39.337 | 92.334 | 66.018 |
|
990 |
+
| e5-base-4k | 54.51| 30.03 | 37.75 | 65.25 | 31.268 | 93.868 | 68.875 |
|
991 |
+
| gte-Qwen2-7B-instruct | 47.24| 45.46 | 31 | 38.5 | 31.272 | 76.08 | 61.151 |
|
992 |
|
993 |
|
994 |
ModernBERT itself has only been trained on 8K context length, but it seems that GTE-ModernColBERT can generalize to even bigger context sizes, though it is not guaranteed so please perform your own benches!
|