Token Classification
GLiNER
PyTorch
multilingual
NER
GLiNER
information extraction
encoder
entity recognition
File size: 2,736 Bytes
1cea6f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{
  "best_metric": null,
  "best_model_checkpoint": null,
  "epoch": 1.056338028169014,
  "eval_steps": 500,
  "global_step": 1200,
  "is_hyper_param_search": false,
  "is_local_process_zero": true,
  "is_world_process_zero": true,
  "log_history": [
    {
      "epoch": 0.0880281690140845,
      "grad_norm": 1525.1461181640625,
      "learning_rate": 4.166666666666667e-06,
      "loss": 134.6262,
      "step": 100
    },
    {
      "epoch": 0.176056338028169,
      "grad_norm": 2871.249755859375,
      "learning_rate": 4.62962962962963e-06,
      "loss": 106.7172,
      "step": 200
    },
    {
      "epoch": 0.2640845070422535,
      "grad_norm": 492.1271667480469,
      "learning_rate": 4.166666666666667e-06,
      "loss": 102.1769,
      "step": 300
    },
    {
      "epoch": 0.352112676056338,
      "grad_norm": 1749.6070556640625,
      "learning_rate": 3.7037037037037037e-06,
      "loss": 106.4214,
      "step": 400
    },
    {
      "epoch": 0.44014084507042256,
      "grad_norm": 853.5518798828125,
      "learning_rate": 3.240740740740741e-06,
      "loss": 92.0699,
      "step": 500
    },
    {
      "epoch": 0.528169014084507,
      "grad_norm": 2185.8486328125,
      "learning_rate": 2.7777777777777783e-06,
      "loss": 90.0462,
      "step": 600
    },
    {
      "epoch": 0.6161971830985915,
      "grad_norm": 411.7020263671875,
      "learning_rate": 2.314814814814815e-06,
      "loss": 93.0463,
      "step": 700
    },
    {
      "epoch": 0.704225352112676,
      "grad_norm": 764.4384155273438,
      "learning_rate": 1.8518518518518519e-06,
      "loss": 86.6424,
      "step": 800
    },
    {
      "epoch": 0.7922535211267606,
      "grad_norm": 3891.708251953125,
      "learning_rate": 1.3888888888888892e-06,
      "loss": 78.9075,
      "step": 900
    },
    {
      "epoch": 0.8802816901408451,
      "grad_norm": 1514.9061279296875,
      "learning_rate": 9.259259259259259e-07,
      "loss": 79.3982,
      "step": 1000
    },
    {
      "epoch": 0.9683098591549296,
      "grad_norm": 1521.738037109375,
      "learning_rate": 4.6296296296296297e-07,
      "loss": 82.1088,
      "step": 1100
    },
    {
      "epoch": 1.0,
      "eval_loss": 197.31683349609375,
      "eval_runtime": 13.0547,
      "eval_samples_per_second": 77.367,
      "eval_steps_per_second": 9.728,
      "step": 1136
    },
    {
      "epoch": 1.056338028169014,
      "grad_norm": 260.0885925292969,
      "learning_rate": 0.0,
      "loss": 75.2076,
      "step": 1200
    }
  ],
  "logging_steps": 100,
  "max_steps": 1200,
  "num_input_tokens_seen": 0,
  "num_train_epochs": 2,
  "save_steps": 600,
  "total_flos": 0.0,
  "train_batch_size": 8,
  "trial_name": null,
  "trial_params": null
}