--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - doof-ferb/infore1_25hours model-index: - name: speecht5_finetuned_infore1_25hours results: [] --- # speecht5_finetuned_infore1_25hours This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the doof-ferb/infore1_25hours dataset. It achieves the following results on the evaluation set: - Loss: 0.4221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4904 | 2.3761 | 1000 | 0.4506 | | 0.4656 | 4.7522 | 2000 | 0.4351 | | 0.4594 | 7.1262 | 3000 | 0.4258 | | 0.458 | 9.5022 | 4000 | 0.4221 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.3.1 - Tokenizers 0.21.0