Jared Sulzdorf's picture

Jared Sulzdorf PRO

jsulz

AI & ML interests

Infrastructure, law, policy

Recent Activity

reacted to BramVanroy's post with πŸš€ about 19 hours ago
πŸ“’πŸ’Ύ Introducing the Common Crawl Creative Commons Corpus (C5)! C5 is a large-scale effort to heavily filter web-crawled data, as collected by the non-profit Common Crawl, to only documents that are Creative Commons-licensed such as cc-by-4.0 or public domain cc0. At this stage 150 billion tokens have been collected. --- πŸ“„ data: https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons 🧰 software: https://github.com/BramVanroy/CommonCrawl-CreativeCommons --- </> To build C5, HTML pages are scrutinized and all links (if any) to CC licenses are collected, both in regular hyperlinks as well as in metadata. Additional data fields are included such as "was the license found in the `head`?" or "if multiple licenses were found, do they contradict each other?", which makes further filtering a breeze. 🌐 In this first version of C5, 8 languages are included (Afrikaans, German, English, French, Frysian, Italian, Dutch and Spanish). The language set was limited for two reasons: computational and storage limitations, and a collaboration with GPT-NL, which requested CC data for these languages to train a Dutch-focused, copyright-conscious LLM. In total, this V1 release contains almost 150 thousand documents and 150 billion tokens. This data was not filtered on quality nor deduplicated so that you can decide for yourself how much data to keep. To give some quality indication, a dataset field is present to describe whether a document is included in the FineWeb(-2) datasets, which are of high quality. πŸ” More work needs to be done! Only 7 out of 100+ Common Crawl crawls have been processed so far. That's encouraging because it means there is a lot more Creative Commons data to be collected! But to get there I need help in terms of compute. The current processing was already heavily sponsored by the Flemish Supercomputer but more is needed. If you have the compute available and which to collaborate in an open and transparent manner, please get in touch!
reacted to BramVanroy's post with ❀️ about 19 hours ago
πŸ“’πŸ’Ύ Introducing the Common Crawl Creative Commons Corpus (C5)! C5 is a large-scale effort to heavily filter web-crawled data, as collected by the non-profit Common Crawl, to only documents that are Creative Commons-licensed such as cc-by-4.0 or public domain cc0. At this stage 150 billion tokens have been collected. --- πŸ“„ data: https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons 🧰 software: https://github.com/BramVanroy/CommonCrawl-CreativeCommons --- </> To build C5, HTML pages are scrutinized and all links (if any) to CC licenses are collected, both in regular hyperlinks as well as in metadata. Additional data fields are included such as "was the license found in the `head`?" or "if multiple licenses were found, do they contradict each other?", which makes further filtering a breeze. 🌐 In this first version of C5, 8 languages are included (Afrikaans, German, English, French, Frysian, Italian, Dutch and Spanish). The language set was limited for two reasons: computational and storage limitations, and a collaboration with GPT-NL, which requested CC data for these languages to train a Dutch-focused, copyright-conscious LLM. In total, this V1 release contains almost 150 thousand documents and 150 billion tokens. This data was not filtered on quality nor deduplicated so that you can decide for yourself how much data to keep. To give some quality indication, a dataset field is present to describe whether a document is included in the FineWeb(-2) datasets, which are of high quality. πŸ” More work needs to be done! Only 7 out of 100+ Common Crawl crawls have been processed so far. That's encouraging because it means there is a lot more Creative Commons data to be collected! But to get there I need help in terms of compute. The current processing was already heavily sponsored by the Flemish Supercomputer but more is needed. If you have the compute available and which to collaborate in an open and transparent manner, please get in touch!
View all activity

Organizations

Hugging Face's profile picture Spaces Examples's profile picture Georgia Tech (Georgia Institute of Technology)'s profile picture Blog-explorers's profile picture Journalists on Hugging Face's profile picture Hugging Face Discord Community's profile picture Xet Team's profile picture open/ acc's profile picture wut?'s profile picture Inference Endpoints Images's profile picture

jsulz's activity

published an article about 1 month ago
view article
Article

Welcome Llama 4 Maverick & Scout on Hugging Face!

By burtenshaw and 6 others β€’
β€’ 142
published an article about 2 months ago
published an article 3 months ago
view article
Article

From Chunks to Blocks: Accelerating Uploads and Downloads on the Hub

By jsulz and 3 others β€’
β€’ 64
published an article 5 months ago
view article
Article

Rearchitecting Hugging Face Uploads and Downloads

By jsulz and 2 others β€’
β€’ 46
published an article 6 months ago
view article
Article

From Files to Chunks: Improving Hugging Face Storage Efficiency

By jsulz and 1 other β€’
β€’ 60