# base dict_api = { "api_key":"ADD", } base_dir = "your_path" # your data path ex) img_folder_path/egoschema # scene clustering divlam = 12 f_path = "your_path" # files from keywords dir q_path = "your_path" # files from questions dir a_path = "your_path" img_folder = "your_path" # your img folder path ex) img_folder_path/egoschema/frames_900_4531/q_uid/image_sec_millisec.jpg # coarse key frame detector maximgslen = 32 limit_keywords = 25 concatname = "LVnet" modelpath = "your_path" # model path question_path = "your_path" # recommend using the same path with scene clustering answer path answerpath = f"{base_dir}/kwkfmatching/kf_{concatname}.jsonl" # kwkfmatching is not necessary. concatdir = f"{base_dir}/kwkfmatching/concatimg_{concatname}" # kwkfmatching is not necessary. # fine key frame detector kf_vlm = "gpt-4o" kf_temp = None kf_num_select = 3 kf_num_input_imgs = 32 kf_question_path = "your_path" # recommend using the same path with coarse key frame detector answer path kf_answer_path = f"{base_dir}/kf_VLM/kf_VLM{kf_num_input_imgs}sel{kf_num_select}_{kf_question_path.split('/')[-1].split('.')[0]}.jsonl" # kf_VLM is not necessary. # fine key frame detector refine refine_num_group = 4 refine_kflen = 12 refine_output_path = f"{base_dir}/kf_VLM/refine/" + kf_answer_path.split('/')[-1] # kf_VLM is not necessary.