File size: 8,995 Bytes
54216bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import json
import base64
import natsort
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader
from config import config
from src.refine import refine_answer
from src.run_gpt import run_gpt
class CustomDatasetGPT(Dataset):
def __init__(self, questions, num_input_imgs, num_select):
self.questions = questions
self.num_input_imgs = num_input_imgs
self.num_select = num_select
def __getitem__(self, index):
line = self.questions[index]
num_select = self.num_select
num_input_imgs = self.num_input_imgs
giter = 0
imgs_group = 8
num_groups = num_input_imgs//imgs_group
kf_paths = line["kf_paths"]
keywords = line["keywords"]
simvalue = line["simvalue"]
concatimg_dir = line['concatimg_dir']
concatimg_paths = natsort.natsorted([f"{concatimg_dir}/{im}" for im in os.listdir(concatimg_dir) if "ipynb" not in im])
concatimages = []
concatimages_base64 = []
qs_org = []
kw_perconcat = []
kf_paths_perconcat = []
simvalue_perconcat = []
segment_timeline = []
for concatidx, img_path in enumerate(concatimg_paths):
concatimages.append(Image.open(img_path).convert('RGB'))
concatimages_base64.append(img_path)
kw_sidx = imgs_group*(concatidx)
kw_eidx = imgs_group*(concatidx+1)
concat_kw = keywords[kw_sidx:kw_eidx]
qs_org_ = create_question(concat_kw, num_select)
kw_perconcat.append(concat_kw)
qs_org.append(qs_org_)
kf_paths_perconcat.append(kf_paths[kw_sidx:kw_eidx])
simvalue_perconcat.append(simvalue[kw_sidx:kw_eidx])
segment_timeline.append(line["segment_timeline"])
concatimg_paths = concatimg_paths[-num_groups:]
concatimages_base64 = concatimages_base64[-num_groups:]
qs_org = qs_org[-num_groups:]
kw_perconcat = kw_perconcat[-num_groups:]
kf_paths_perconcat = kf_paths_perconcat[-num_groups:]
simvalue_perconcat = simvalue_perconcat[-num_groups:]
segment_timeline = segment_timeline[-num_groups:]
return concatimages_base64, concatimages[0].size, kw_perconcat, kf_paths_perconcat, qs_org, segment_timeline, concatimg_paths, simvalue_perconcat
def __len__(self):
return len(self.questions)
def create_question(concat_kw, num_select):
imgkw_sen = ""
for i, e in enumerate(concat_kw):
if i < len(concat_kw) - 1: imgkw_sen = imgkw_sen + f"Image_{i}: '{e}', "
else: imgkw_sen = imgkw_sen + f"Image_{i}: '{e}'."
if num_select == 3:
prompt = f"Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2, image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7. Here are images and their associated guess words: {imgkw_sen}. Think step-by-step and list only the names of the {num_select} images most closely related to the guessed words. Do not select blurry images in your answer. If none of the images correspond to the provided guess words, choose any two images at random. Your answer should follow the JSON format shown below and should only include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere strictly to the provided JSON format example.\n"
prompt += "{\"image name\": write reason for your selection in 10 words}."
prompt += " This is one example output format. {\n \"image_0\": \"Person washing a plate; linked to dish cleaning.\",\n \"image_2\": \"Person washing a bowl; linked to dish cleaning.\",\n \"image_6\": \"Person running water on a sponge; related to dish cleaning.\"\n}"
elif num_select == 4:
prompt = f"Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2, image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7. Here are images and their associated guess words: {imgkw_sen}. Think step-by-step and list only the names of the {num_select} images most closely related to the guessed words. Do not select blurry images in your answer. If none of the images correspond to the provided guess words, choose any two images at random. Your answer should follow the JSON format shown below and should only include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere strictly to the provided JSON format example.\n"
prompt += "{\"image name\": write reason for your selection in 10 words}."
prompt += " This is one example output format. {\n \"image_0\": \"Person washing a plate; linked to dish cleaning.\",\n \"image_2\": \"Person washing a bowl; linked to dish cleaning.\",\n \"image_6\": \"Person running water on a sponge; related to dish cleaning.\",\n \"image_7\": \"Person moves mouse; linked to working.\"\n}"
else: assert False, f"num_select:{num_select} is not defined yet"
return prompt
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def create_data_loader_gpt(questions, num_input_imgs, num_select, batch_size=1, num_workers=4):
assert batch_size == 1, "batch_size must be 1"
dataset = CustomDatasetGPT(questions, num_input_imgs, num_select)
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
return data_loader, dataset
def eval_model():
question_path, vlm, num_input_imgs, num_select, temp = config.kf_question_path, config.kf_vlm, config.kf_num_input_imgs, config.kf_num_select, config.kf_temp
questions = [json.loads(q) for q in open(os.path.expanduser(question_path), "r")]
num_questions = len(questions)
giter = 0
answer_path = config.kf_answer_path
os.makedirs(os.path.dirname(answer_path), exist_ok=True)
print(f"question_path:{question_path}\nanswer_path:{answer_path}")
ans_file = open(answer_path, "w")
data_loader, dataset = create_data_loader_gpt(questions, num_input_imgs, num_select)
outputs = ""
for (image_paths, image_sizes, kw_perconcat, kf_paths_perconcat, cur_prompts, segment_timeline, concatimg_paths, simvalue_perconcat), line in tqdm(zip(data_loader, questions), total=len(questions)):
idx, q_uid = line["q_uid"], line["q_uid"]
CA = line["CA"] if "CA" in line else None
option0 = line['option 0']
option1 = line['option 1']
option2 = line['option 2']
option3 = line['option 3']
option4 = line['option 4']
question = line['question']
pastobj = None
past_VLM_path = None
past_VLM_timeline = None
kw_VLM = []
kf_paths_VLM = []
kf_timeline = []
kw_VLM_ordered = []
kf_paths_VLM_ordered = []
kf_timeline_ordered = []
prompts = [x[0] for x in cur_prompts]
image_paths = [x[0] for x in image_paths]
output_VLM = run_gpt(
images=image_paths,
texts=prompts,
api_keys = list(config.dict_api.values()),
max_tokens=2000,
model=vlm,
temperature=temp,
num_threads=20,
backoff_time=1*60,
silent=False,
dataset="egoschema",
verbose=False,
)
output_VLM = list(output_VLM)
for j, _ in enumerate(cur_prompts):
kf_paths_perconcat_ = kf_paths_perconcat[j]
kf_timeline.append([f"{e[0].split('_')[-2]}.{e[0].split('_')[-1].split('.')[0]}" for e in kf_paths_perconcat_])
line_frame = line.copy()
line_frame["output_VLM"] = output_VLM
line_frame["concatimg_paths"] = concatimg_paths
line_frame["kf_paths_VLM"] = kf_paths_perconcat
line_frame["kf_timeline"] = kf_timeline
line_frame["kw_perconcat_clip"] = kw_perconcat
line_frame["iter"] = giter
line_frame.pop("filepath")
line_frame.pop("kf_paths")
line_frame.pop("google_drive_id")
try: ans_file.write(json.dumps(line_frame) + "\n")
except: assert False, f"line_frame:{line_frame}"
ans_file.close()
print(f"question_path:{question_path}\nanswer_path:{answer_path}")
print("job is done")
if __name__ == "__main__":
eval_model()
refine_answer()
|