qwen-2.5-recursive-v1 / finetune_config.yml
joaormedeiros's picture
Upload finetune_config.yml with huggingface_hub
d5f2589 verified
data:
dataset_name: valid_consolidated
from_hub: false
from_langfuse: true
input_file: input/executed/executed_filtered_valid_consolidated.jsonl
num_proc: 2
seed: 3407
split: train
test_size: 0.2
logging:
file: finetune.log
model:
adapter: null
dtype: null
load_in_4bit: true
lora:
alpha: 16
bias: none
dropout: 0
gradient_checkpointing: unsloth
loftq_config: null
r: 16
random_state: 3407
target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
use_rslora: false
max_seq_length: 2048
name: Qwen/Qwen2.5-14B-Instruct
save:
gguf_quantization:
- q4_k_m
- q8_0
- q5_k_m
hub_repo: joaormedeiros/qwen-2.5-recursive-v1
local_dir: lora_model
private: true
push_to_hub: true
save_mode: all_training_files
test_inference:
enabled: true
input: 1, 1, 2, 3, 5, 8
instruction: Continue the fibonnaci sequence.
training:
batch_size:
eval: 2
train: 4
eval_steps: 100
gradient_accumulation_steps: 4
learning_rate: 0.0002
logging_steps: 1
lr_scheduler: linear
num_epochs: 1
optimizer: adamw_8bit
output_dir: outputs
report_to: tensorboard
seed: 3407
warmup_steps: 1
weight_decay: 0.01