jameslahm commited on
Commit
76e158b
·
verified ·
1 Parent(s): 9423edd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -21
README.md CHANGED
@@ -4,7 +4,6 @@ license: mit
4
  tags:
5
  - image-classification
6
  - timm
7
- library_tag: timm
8
  pipeline_tag: image-classification
9
  ---
10
 
@@ -14,6 +13,45 @@ Paper: https://arxiv.org/abs/2503.23135
14
 
15
  Code: https://github.com/jameslahm/lsnet
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ```bibtex
18
  @misc{wang2025lsnetlargefocussmall,
19
  title={LSNet: See Large, Focus Small},
@@ -32,7 +70,7 @@ Code: https://github.com/jameslahm/lsnet
32
  Official PyTorch implementation of **LSNet**. CVPR 2025.
33
 
34
  <p align="center">
35
- <img src="figures/throughput.svg" width=60%> <br>
36
  Models are trained on ImageNet-1K and the throughput
37
  is tested on a Nvidia RTX3090.
38
  </p>
@@ -103,9 +141,9 @@ model = timm.create_model(
103
  ```
104
 
105
  ## Downstream Tasks
106
- [Object Detection and Instance Segmentation](detection/README.md)<br>
107
- [Semantic Segmentation](segmentation/README.md)<br>
108
- [Robustness Evaluation](README_robustness.md)
109
 
110
  ## Acknowledgement
111
 
@@ -113,19 +151,4 @@ Classification (ImageNet) code base is partly built with [EfficientViT](https://
113
 
114
  The detection and segmentation pipeline is from [MMCV](https://github.com/open-mmlab/mmcv) ([MMDetection](https://github.com/open-mmlab/mmdetection) and [MMSegmentation](https://github.com/open-mmlab/mmsegmentation)).
115
 
116
- Thanks for the great implementations!
117
-
118
- ## Citation
119
-
120
- If our code or models help your work, please cite our paper:
121
- ```BibTeX
122
- @misc{wang2025lsnetlargefocussmall,
123
- title={LSNet: See Large, Focus Small},
124
- author={Ao Wang and Hui Chen and Zijia Lin and Jungong Han and Guiguang Ding},
125
- year={2025},
126
- eprint={2503.23135},
127
- archivePrefix={arXiv},
128
- primaryClass={cs.CV},
129
- url={https://arxiv.org/abs/2503.23135},
130
- }
131
- ```
 
4
  tags:
5
  - image-classification
6
  - timm
 
7
  pipeline_tag: image-classification
8
  ---
9
 
 
13
 
14
  Code: https://github.com/jameslahm/lsnet
15
 
16
+ ## Usage
17
+
18
+ ```python
19
+ import timm
20
+ import torch
21
+ from PIL import Image
22
+ import requests
23
+ from timm.data import resolve_data_config, create_transform
24
+
25
+ # Load the model
26
+ model = timm.create_model(
27
+ 'hf_hub:jameslahm/lsnet_b',
28
+ pretrained=True
29
+ )
30
+ model.eval()
31
+
32
+ # Load and transform image
33
+ # Example using a URL:
34
+ url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ img = Image.open(requests.get(url, stream=True).raw)
36
+
37
+ config = resolve_data_config({}, model=model)
38
+ transform = create_transform(**config)
39
+ input_tensor = transform(img).unsqueeze(0) # transform and add batch dimension
40
+
41
+ # Make prediction
42
+ with torch.no_grad():
43
+ output = model(input_tensor)
44
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
45
+
46
+ # Get top 5 predictions
47
+ top5_prob, top5_catid = torch.topk(probabilities, 5)
48
+ # Assuming you have imagenet labels list 'imagenet_labels'
49
+ # for i in range(top5_prob.size(0)):
50
+ # print(imagenet_labels[top5_catid[i]], top5_prob[i].item())
51
+ ```
52
+
53
+ ## Citation
54
+ If our code or models help your work, please cite our paper:
55
  ```bibtex
56
  @misc{wang2025lsnetlargefocussmall,
57
  title={LSNet: See Large, Focus Small},
 
70
  Official PyTorch implementation of **LSNet**. CVPR 2025.
71
 
72
  <p align="center">
73
+ <img src="https://raw.githubusercontent.com/THU-MIG/lsnet/refs/heads/master/figures/throughput.svg" width=60%> <br>
74
  Models are trained on ImageNet-1K and the throughput
75
  is tested on a Nvidia RTX3090.
76
  </p>
 
141
  ```
142
 
143
  ## Downstream Tasks
144
+ [Object Detection and Instance Segmentation](https://github.com/THU-MIG/lsnet/blob/master/detection/README.md)<br>
145
+ [Semantic Segmentation](https://github.com/THU-MIG/lsnet/blob/master/segmentation/README.md)<br>
146
+ [Robustness Evaluation](https://github.com/THU-MIG/lsnet/blob/master/README_robustness.md)
147
 
148
  ## Acknowledgement
149
 
 
151
 
152
  The detection and segmentation pipeline is from [MMCV](https://github.com/open-mmlab/mmcv) ([MMDetection](https://github.com/open-mmlab/mmdetection) and [MMSegmentation](https://github.com/open-mmlab/mmsegmentation)).
153
 
154
+ Thanks for the great implementations!