---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:33174
- loss:TripletLoss
base_model: sentence-transformers/multi-qa-mpnet-base-cos-v1
widget:
- source_sentence: 'writeBlock blk_-2025444374149014902 received exception java.io.IOException:
Could not read from stream'
sentences:
- PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=218.65.30.30
user=root
- 'writeBlock blk_5718472814394212827 received exception java.io.IOException: Could
not read from stream'
- Adding an already existing block blk_5697572983288390847
- source_sentence: Accepted password for hxu from 137.189.206.152 port 13415 ssh2
sentences:
- Address 14.186.200.51 maps to static.vnpt.vn, but this does not map back to the
address - POSSIBLE BREAK-IN ATTEMPT!
- Accepted password for jmzhu from 112.96.33.40 port 48253 ssh2
- Failed password for invalid user shengt from 115.233.91.242 port 49601 ssh2
- source_sentence: Unexpected error trying to delete block blk_9209337043266813528.
BlockInfo not found in volumeMap.
sentences:
- Deleting block blk_6056040671227271408 file /mnt/hadoop/dfs/data/current/subdir63/blk_6056040671227271408
- Unexpected error trying to delete block blk_8234858690572948833. BlockInfo not
found in volumeMap.
- '[instance: 40568281-5a34-464a-b17b-99a0a5591045] Deleting instance files /var/lib/nova/instances/40568281-5a34-464a-b17b-99a0a5591045_del'
- source_sentence: 'writeBlock blk_5827639102770185153 received exception java.io.IOException:
Could not read from stream'
sentences:
- 'pam_unix(sshd:auth): check pass; user unknown'
- Exception in receiveBlock for block blk_6495484866542253279 java.io.EOFException
- 'writeBlock blk_-3265479347842446682 received exception java.io.IOException: Could
not read from stream'
- source_sentence: '[instance: 71065aa4-40af-4e74-bd6a-ef77c7f4dd02] Total memory:
64172 MB, used: 512.00 MB'
sentences:
- '[instance: c6289e85-a048-42bd-b32a-427cc1b12ef5] Total memory: 64172 MB, used:
512.00 MB'
- '[instance: 13b4689e-7f96-40a3-89a5-31d8e72a4113] VM Stopped (Lifecycle Event)'
- '[instance: 09e74992-da6d-4111-861e-6d22bbf91fdc] Claim successful'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'[instance: 71065aa4-40af-4e74-bd6a-ef77c7f4dd02] Total memory: 64172 MB, used: 512.00 MB',
'[instance: c6289e85-a048-42bd-b32a-427cc1b12ef5] Total memory: 64172 MB, used: 512.00 MB',
'[instance: 09e74992-da6d-4111-861e-6d22bbf91fdc] Claim successful',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 33,174 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
pam_unix(sshd:session): session opened for user hxu by (uid=0)
| pam_unix(sshd:session): session opened for user curi by (uid=0)
| Received disconnect from 58.218.213.45: 11: disconnect [preauth]
|
| [instance: 78644035-9af0-4e94-b1bc-6412cb13e474] VM Stopped (Lifecycle Event)
| [instance: 18473413-894b-4ae9-85eb-566134c89cd4] VM Stopped (Lifecycle Event)
| [instance: 643b82e0-49dd-4ff5-a967-9483ba081678] Creating image
|
| PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=59.63.188.30 user=root
| PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=218.65.30.126 user=root
| pam_unix(sshd:session): session opened for user hxu by (uid=0)
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters