ishandotsh commited on
Commit
9482b50
·
verified ·
1 Parent(s): 274df57

Trained on openstack, openssh, hdfs

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,360 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:33174
8
+ - loss:TripletLoss
9
+ base_model: sentence-transformers/multi-qa-mpnet-base-cos-v1
10
+ widget:
11
+ - source_sentence: 'writeBlock blk_-2025444374149014902 received exception java.io.IOException:
12
+ Could not read from stream'
13
+ sentences:
14
+ - PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=218.65.30.30
15
+ user=root
16
+ - 'writeBlock blk_5718472814394212827 received exception java.io.IOException: Could
17
+ not read from stream'
18
+ - Adding an already existing block blk_5697572983288390847
19
+ - source_sentence: Accepted password for hxu from 137.189.206.152 port 13415 ssh2
20
+ sentences:
21
+ - Address 14.186.200.51 maps to static.vnpt.vn, but this does not map back to the
22
+ address - POSSIBLE BREAK-IN ATTEMPT!
23
+ - Accepted password for jmzhu from 112.96.33.40 port 48253 ssh2
24
+ - Failed password for invalid user shengt from 115.233.91.242 port 49601 ssh2
25
+ - source_sentence: Unexpected error trying to delete block blk_9209337043266813528.
26
+ BlockInfo not found in volumeMap.
27
+ sentences:
28
+ - Deleting block blk_6056040671227271408 file /mnt/hadoop/dfs/data/current/subdir63/blk_6056040671227271408
29
+ - Unexpected error trying to delete block blk_8234858690572948833. BlockInfo not
30
+ found in volumeMap.
31
+ - '[instance: 40568281-5a34-464a-b17b-99a0a5591045] Deleting instance files /var/lib/nova/instances/40568281-5a34-464a-b17b-99a0a5591045_del'
32
+ - source_sentence: 'writeBlock blk_5827639102770185153 received exception java.io.IOException:
33
+ Could not read from stream'
34
+ sentences:
35
+ - 'pam_unix(sshd:auth): check pass; user unknown'
36
+ - Exception in receiveBlock for block blk_6495484866542253279 java.io.EOFException
37
+ - 'writeBlock blk_-3265479347842446682 received exception java.io.IOException: Could
38
+ not read from stream'
39
+ - source_sentence: '[instance: 71065aa4-40af-4e74-bd6a-ef77c7f4dd02] Total memory:
40
+ 64172 MB, used: 512.00 MB'
41
+ sentences:
42
+ - '[instance: c6289e85-a048-42bd-b32a-427cc1b12ef5] Total memory: 64172 MB, used:
43
+ 512.00 MB'
44
+ - '[instance: 13b4689e-7f96-40a3-89a5-31d8e72a4113] VM Stopped (Lifecycle Event)'
45
+ - '[instance: 09e74992-da6d-4111-861e-6d22bbf91fdc] Claim successful'
46
+ pipeline_tag: sentence-similarity
47
+ library_name: sentence-transformers
48
+ ---
49
+
50
+ # SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-cos-v1
51
+
52
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
53
+
54
+ ## Model Details
55
+
56
+ ### Model Description
57
+ - **Model Type:** Sentence Transformer
58
+ - **Base model:** [sentence-transformers/multi-qa-mpnet-base-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-cos-v1) <!-- at revision 822dbc9732879fe45b5d79fdb372f2ccec4c76b5 -->
59
+ - **Maximum Sequence Length:** 512 tokens
60
+ - **Output Dimensionality:** 768 dimensions
61
+ - **Similarity Function:** Cosine Similarity
62
+ <!-- - **Training Dataset:** Unknown -->
63
+ <!-- - **Language:** Unknown -->
64
+ <!-- - **License:** Unknown -->
65
+
66
+ ### Model Sources
67
+
68
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
69
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
70
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
71
+
72
+ ### Full Model Architecture
73
+
74
+ ```
75
+ SentenceTransformer(
76
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
77
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
78
+ (2): Normalize()
79
+ )
80
+ ```
81
+
82
+ ## Usage
83
+
84
+ ### Direct Usage (Sentence Transformers)
85
+
86
+ First install the Sentence Transformers library:
87
+
88
+ ```bash
89
+ pip install -U sentence-transformers
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SentenceTransformer("sentence_transformers_model_id")
98
+ # Run inference
99
+ sentences = [
100
+ '[instance: 71065aa4-40af-4e74-bd6a-ef77c7f4dd02] Total memory: 64172 MB, used: 512.00 MB',
101
+ '[instance: c6289e85-a048-42bd-b32a-427cc1b12ef5] Total memory: 64172 MB, used: 512.00 MB',
102
+ '[instance: 09e74992-da6d-4111-861e-6d22bbf91fdc] Claim successful',
103
+ ]
104
+ embeddings = model.encode(sentences)
105
+ print(embeddings.shape)
106
+ # [3, 768]
107
+
108
+ # Get the similarity scores for the embeddings
109
+ similarities = model.similarity(embeddings, embeddings)
110
+ print(similarities.shape)
111
+ # [3, 3]
112
+ ```
113
+
114
+ <!--
115
+ ### Direct Usage (Transformers)
116
+
117
+ <details><summary>Click to see the direct usage in Transformers</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Downstream Usage (Sentence Transformers)
124
+
125
+ You can finetune this model on your own dataset.
126
+
127
+ <details><summary>Click to expand</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Dataset
153
+
154
+ #### Unnamed Dataset
155
+
156
+ * Size: 33,174 training samples
157
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | sentence_0 | sentence_1 | sentence_2 |
160
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
161
+ | type | string | string | string |
162
+ | details | <ul><li>min: 12 tokens</li><li>mean: 41.23 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 41.22 tokens</li><li>max: 94 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 39.57 tokens</li><li>max: 94 tokens</li></ul> |
163
+ * Samples:
164
+ | sentence_0 | sentence_1 | sentence_2 |
165
+ |:-------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------|
166
+ | <code>pam_unix(sshd:session): session opened for user hxu by (uid=0)</code> | <code>pam_unix(sshd:session): session opened for user curi by (uid=0)</code> | <code>Received disconnect from 58.218.213.45: 11: disconnect [preauth]</code> |
167
+ | <code>[instance: 78644035-9af0-4e94-b1bc-6412cb13e474] VM Stopped (Lifecycle Event)</code> | <code>[instance: 18473413-894b-4ae9-85eb-566134c89cd4] VM Stopped (Lifecycle Event)</code> | <code>[instance: 643b82e0-49dd-4ff5-a967-9483ba081678] Creating image</code> |
168
+ | <code>PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=59.63.188.30 user=root</code> | <code>PAM 5 more authentication failures; logname= uid=0 euid=0 tty=ssh ruser= rhost=218.65.30.126 user=root</code> | <code>pam_unix(sshd:session): session opened for user hxu by (uid=0)</code> |
169
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
170
+ ```json
171
+ {
172
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
173
+ "triplet_margin": 5
174
+ }
175
+ ```
176
+
177
+ ### Training Hyperparameters
178
+ #### Non-Default Hyperparameters
179
+
180
+ - `eval_strategy`: steps
181
+ - `per_device_train_batch_size`: 64
182
+ - `per_device_eval_batch_size`: 64
183
+ - `multi_dataset_batch_sampler`: round_robin
184
+
185
+ #### All Hyperparameters
186
+ <details><summary>Click to expand</summary>
187
+
188
+ - `overwrite_output_dir`: False
189
+ - `do_predict`: False
190
+ - `eval_strategy`: steps
191
+ - `prediction_loss_only`: True
192
+ - `per_device_train_batch_size`: 64
193
+ - `per_device_eval_batch_size`: 64
194
+ - `per_gpu_train_batch_size`: None
195
+ - `per_gpu_eval_batch_size`: None
196
+ - `gradient_accumulation_steps`: 1
197
+ - `eval_accumulation_steps`: None
198
+ - `torch_empty_cache_steps`: None
199
+ - `learning_rate`: 5e-05
200
+ - `weight_decay`: 0.0
201
+ - `adam_beta1`: 0.9
202
+ - `adam_beta2`: 0.999
203
+ - `adam_epsilon`: 1e-08
204
+ - `max_grad_norm`: 1
205
+ - `num_train_epochs`: 3
206
+ - `max_steps`: -1
207
+ - `lr_scheduler_type`: linear
208
+ - `lr_scheduler_kwargs`: {}
209
+ - `warmup_ratio`: 0.0
210
+ - `warmup_steps`: 0
211
+ - `log_level`: passive
212
+ - `log_level_replica`: warning
213
+ - `log_on_each_node`: True
214
+ - `logging_nan_inf_filter`: True
215
+ - `save_safetensors`: True
216
+ - `save_on_each_node`: False
217
+ - `save_only_model`: False
218
+ - `restore_callback_states_from_checkpoint`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 42
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: False
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
252
+ - `deepspeed`: None
253
+ - `label_smoothing_factor`: 0.0
254
+ - `optim`: adamw_torch
255
+ - `optim_args`: None
256
+ - `adafactor`: False
257
+ - `group_by_length`: False
258
+ - `length_column_name`: length
259
+ - `ddp_find_unused_parameters`: None
260
+ - `ddp_bucket_cap_mb`: None
261
+ - `ddp_broadcast_buffers`: False
262
+ - `dataloader_pin_memory`: True
263
+ - `dataloader_persistent_workers`: False
264
+ - `skip_memory_metrics`: True
265
+ - `use_legacy_prediction_loop`: False
266
+ - `push_to_hub`: False
267
+ - `resume_from_checkpoint`: None
268
+ - `hub_model_id`: None
269
+ - `hub_strategy`: every_save
270
+ - `hub_private_repo`: None
271
+ - `hub_always_push`: False
272
+ - `gradient_checkpointing`: False
273
+ - `gradient_checkpointing_kwargs`: None
274
+ - `include_inputs_for_metrics`: False
275
+ - `include_for_metrics`: []
276
+ - `eval_do_concat_batches`: True
277
+ - `fp16_backend`: auto
278
+ - `push_to_hub_model_id`: None
279
+ - `push_to_hub_organization`: None
280
+ - `mp_parameters`:
281
+ - `auto_find_batch_size`: False
282
+ - `full_determinism`: False
283
+ - `torchdynamo`: None
284
+ - `ray_scope`: last
285
+ - `ddp_timeout`: 1800
286
+ - `torch_compile`: False
287
+ - `torch_compile_backend`: None
288
+ - `torch_compile_mode`: None
289
+ - `dispatch_batches`: None
290
+ - `split_batches`: None
291
+ - `include_tokens_per_second`: False
292
+ - `include_num_input_tokens_seen`: False
293
+ - `neftune_noise_alpha`: None
294
+ - `optim_target_modules`: None
295
+ - `batch_eval_metrics`: False
296
+ - `eval_on_start`: False
297
+ - `use_liger_kernel`: False
298
+ - `eval_use_gather_object`: False
299
+ - `average_tokens_across_devices`: False
300
+ - `prompts`: None
301
+ - `batch_sampler`: batch_sampler
302
+ - `multi_dataset_batch_sampler`: round_robin
303
+
304
+ </details>
305
+
306
+ ### Framework Versions
307
+ - Python: 3.10.12
308
+ - Sentence Transformers: 3.4.1
309
+ - Transformers: 4.49.0
310
+ - PyTorch: 2.6.0+cu124
311
+ - Accelerate: 1.4.0
312
+ - Datasets: 3.3.2
313
+ - Tokenizers: 0.21.0
314
+
315
+ ## Citation
316
+
317
+ ### BibTeX
318
+
319
+ #### Sentence Transformers
320
+ ```bibtex
321
+ @inproceedings{reimers-2019-sentence-bert,
322
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
323
+ author = "Reimers, Nils and Gurevych, Iryna",
324
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
325
+ month = "11",
326
+ year = "2019",
327
+ publisher = "Association for Computational Linguistics",
328
+ url = "https://arxiv.org/abs/1908.10084",
329
+ }
330
+ ```
331
+
332
+ #### TripletLoss
333
+ ```bibtex
334
+ @misc{hermans2017defense,
335
+ title={In Defense of the Triplet Loss for Person Re-Identification},
336
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
337
+ year={2017},
338
+ eprint={1703.07737},
339
+ archivePrefix={arXiv},
340
+ primaryClass={cs.CV}
341
+ }
342
+ ```
343
+
344
+ <!--
345
+ ## Glossary
346
+
347
+ *Clearly define terms in order to be accessible across audiences.*
348
+ -->
349
+
350
+ <!--
351
+ ## Model Card Authors
352
+
353
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
354
+ -->
355
+
356
+ <!--
357
+ ## Model Card Contact
358
+
359
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
360
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/logembed_a3_20250307_145500/checkpoints/eval/checkpoint-best",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.49.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
logs/events.out.tfevents.1741388101.pc.50318.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee4916f34b7f55978e3db18813b6f6cfd60407bd22447fb1337c07deaad6fac3
3
+ size 1131
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14d2b0c5558fa5d286817066356ae225d14084ce5bb52bdddb9174b52c98841b
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 250,
60
+ "model_max_length": 512,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff