KaraKaraWitch commited on
Commit
f42f284
·
verified ·
1 Parent(s): ec11adf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -1
README.md CHANGED
@@ -30,4 +30,54 @@ Benchmarks is as follows for both Qwerky-QwQ-32B and Qwerky-72B models:
30
  | winogrande | acc | **0.7324** | 0.7048 | **0.7956** | 0.7632 |
31
  | mmlu | acc | 0.7431 | **0.7985** | 0.7746 | **0.8338** |
32
 
33
- > *Note: All benchmarks except MMLU are 0-shot and Version 1. For MMLU, it's Version 2.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  | winogrande | acc | **0.7324** | 0.7048 | **0.7956** | 0.7632 |
31
  | mmlu | acc | 0.7431 | **0.7985** | 0.7746 | **0.8338** |
32
 
33
+ > *Note: All benchmarks except MMLU are 0-shot and Version 1. For MMLU, it's Version 2.*
34
+
35
+
36
+ ## Running with `transformers`
37
+
38
+ Since this model is not on transformers at the moment you will have to enable remote code with the following line.
39
+
40
+ ```py
41
+ # ...
42
+
43
+ model = AutoModelForCausalLM.from_pretrained("featherless-ai/Qwerky-QwQ-32B", trust_remote_code=True)
44
+
45
+ # ...
46
+ ```
47
+
48
+ Other than enabling remote code, you may run the model like a regular model with transformers like so.
49
+
50
+ ```py
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ model_name = "featherless-ai/Qwerky-72B"
54
+
55
+ model = AutoModelForCausalLM.from_pretrained(
56
+ model_name,
57
+ torch_dtype="auto",
58
+ device_map="auto",
59
+ trust_remote_code=True,
60
+ )
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
63
+
64
+ prompt = """There is a very famous song that I recall by the singer's surname as Astley.
65
+ I can't remember the name or the youtube URL that people use to link as an example url.
66
+ What's song name?"""
67
+ messages = [
68
+ {"role": "system", "content": "You are a helpful assistant."},
69
+ {"role": "user", "content": prompt},
70
+ ]
71
+ text = tokenizer.apply_chat_template(
72
+ messages, tokenize=False, add_generation_prompt=True
73
+ )
74
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
75
+
76
+ generated_ids = model.generate(**model_inputs, max_new_tokens=512)
77
+ generated_ids = [
78
+ output_ids[len(input_ids) :]
79
+ for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
80
+ ]
81
+
82
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
83
+ ```