--- license: apache-2.0 datasets: - mlabonne/FineTome-100k - open-r1/Mixture-of-Thoughts base_model: - Qwen/Qwen3-1.7B tags: - think - reasoning - qwen3 --- # Model details This is a Qwen 3 1.7b model trained on 20k conversations from `open-r1/Mixture-of-Thoughts` and 3k conversations from `mlabonne/FineTome-100k` to enchance it's reasoning capabilities. This model aims to run in weaker or old devices such as smartphones or an old laptop. # How to run You can run this model by using multiple interface choices ## transformers As the qwen team suggested to use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "ertghiu256/qwen3-1.7b-mixture-of-thought" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ## vllm Run this command ```bash vllm serve ertghiu256/qwen3-1.7b-mixture-of-thought --enable-reasoning --reasoning-parser deepseek_r1 ``` ## Sglang Run this command ```bash python -m sglang.launch_server --model-path ertghiu256/qwen3-1.7b-mixture-of-thought --reasoning-parser deepseek-r1 ``` ## llama.cpp Run this command ```bash llama-server --hf-repo ertghiu256/qwen3-1.7b-mixture-of-thought ``` or ```bash llama-cli --hf ertghiu256/qwen3-1.7b-mixture-of-thought ``` ## ollama Run this command ```bash ollama run hf.co/ertghiu256/qwen3-1.7b-mixture-of-thought:Q4_K_M ``` ## lm studio Search ``` ertghiu256/qwen3-1.7b-mixture-of-thought ``` in the lm studio model search list then download ### Recomended parameters #### Extended thinking mode ``` temp: 0.6 num_ctx: ≥8192 top_p: 0.95 top_k: 10 ``` #### Short thinking mode ``` temp: 0.5 num_ctx: ≥4096 top_p: 0.8 top_k: 10 min_p: 0.1 ``` ### Training details ``` Lora rank: 32 Learning rate: 1e-4 Steps: 70 Datasets: - FlameF0X/Mixture-of-Thoughts-2048T - mlabonne/FineTome-100k ```