| import torch |
| import torch.nn.functional as F |
| import inspect |
| import numpy as np |
| from typing import Callable, List, Optional, Union |
| from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor |
| from diffusers import AutoencoderKL, DiffusionPipeline |
| from diffusers.utils import ( |
| deprecate, |
| is_accelerate_available, |
| is_accelerate_version, |
| logging, |
| ) |
| from diffusers.configuration_utils import FrozenDict |
| from diffusers.schedulers import DDIMScheduler |
| from diffusers.utils.torch_utils import randn_tensor |
|
|
| from mv_unet import MultiViewUNetModel, get_camera |
|
|
| logger = logging.get_logger(__name__) |
|
|
|
|
| class MVDreamPipeline(DiffusionPipeline): |
|
|
| _optional_components = ["feature_extractor", "image_encoder"] |
|
|
| def __init__( |
| self, |
| vae: AutoencoderKL, |
| unet: MultiViewUNetModel, |
| tokenizer: CLIPTokenizer, |
| text_encoder: CLIPTextModel, |
| scheduler: DDIMScheduler, |
| |
| feature_extractor: CLIPImageProcessor, |
| image_encoder: CLIPVisionModel, |
| requires_safety_checker: bool = False, |
| ): |
| super().__init__() |
|
|
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
| deprecation_message = ( |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
| " file" |
| ) |
| deprecate( |
| "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False |
| ) |
| new_config = dict(scheduler.config) |
| new_config["steps_offset"] = 1 |
| scheduler._internal_dict = FrozenDict(new_config) |
|
|
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
| deprecation_message = ( |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
| ) |
| deprecate( |
| "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False |
| ) |
| new_config = dict(scheduler.config) |
| new_config["clip_sample"] = False |
| scheduler._internal_dict = FrozenDict(new_config) |
|
|
| self.register_modules( |
| vae=vae, |
| unet=unet, |
| scheduler=scheduler, |
| tokenizer=tokenizer, |
| text_encoder=text_encoder, |
| feature_extractor=feature_extractor, |
| image_encoder=image_encoder, |
| ) |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
| self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
| def enable_vae_slicing(self): |
| r""" |
| Enable sliced VAE decoding. |
| |
| When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
| steps. This is useful to save some memory and allow larger batch sizes. |
| """ |
| self.vae.enable_slicing() |
|
|
| def disable_vae_slicing(self): |
| r""" |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
| computing decoding in one step. |
| """ |
| self.vae.disable_slicing() |
|
|
| def enable_vae_tiling(self): |
| r""" |
| Enable tiled VAE decoding. |
| |
| When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in |
| several steps. This is useful to save a large amount of memory and to allow the processing of larger images. |
| """ |
| self.vae.enable_tiling() |
|
|
| def disable_vae_tiling(self): |
| r""" |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to |
| computing decoding in one step. |
| """ |
| self.vae.disable_tiling() |
|
|
| def enable_sequential_cpu_offload(self, gpu_id=0): |
| r""" |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
| text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
| `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
| Note that offloading happens on a submodule basis. Memory savings are higher than with |
| `enable_model_cpu_offload`, but performance is lower. |
| """ |
| if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
| from accelerate import cpu_offload |
| else: |
| raise ImportError( |
| "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher" |
| ) |
|
|
| device = torch.device(f"cuda:{gpu_id}") |
|
|
| if self.device.type != "cpu": |
| self.to("cpu", silence_dtype_warnings=True) |
| torch.cuda.empty_cache() |
|
|
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
| cpu_offload(cpu_offloaded_model, device) |
|
|
| def enable_model_cpu_offload(self, gpu_id=0): |
| r""" |
| Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
| to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
| method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
| `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
| """ |
| if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
| from accelerate import cpu_offload_with_hook |
| else: |
| raise ImportError( |
| "`enable_model_offload` requires `accelerate v0.17.0` or higher." |
| ) |
|
|
| device = torch.device(f"cuda:{gpu_id}") |
|
|
| if self.device.type != "cpu": |
| self.to("cpu", silence_dtype_warnings=True) |
| torch.cuda.empty_cache() |
|
|
| hook = None |
| for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: |
| _, hook = cpu_offload_with_hook( |
| cpu_offloaded_model, device, prev_module_hook=hook |
| ) |
|
|
| |
| self.final_offload_hook = hook |
|
|
| @property |
| def _execution_device(self): |
| r""" |
| Returns the device on which the pipeline's models will be executed. After calling |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
| hooks. |
| """ |
| if not hasattr(self.unet, "_hf_hook"): |
| return self.device |
| for module in self.unet.modules(): |
| if ( |
| hasattr(module, "_hf_hook") |
| and hasattr(module._hf_hook, "execution_device") |
| and module._hf_hook.execution_device is not None |
| ): |
| return torch.device(module._hf_hook.execution_device) |
| return self.device |
|
|
| def _encode_prompt( |
| self, |
| prompt, |
| device, |
| num_images_per_prompt, |
| do_classifier_free_guidance: bool, |
| negative_prompt=None, |
| ): |
| r""" |
| Encodes the prompt into text encoder hidden states. |
| |
| Args: |
| prompt (`str` or `List[str]`, *optional*): |
| prompt to be encoded |
| device: (`torch.device`): |
| torch device |
| num_images_per_prompt (`int`): |
| number of images that should be generated per prompt |
| do_classifier_free_guidance (`bool`): |
| whether to use classifier free guidance or not |
| negative_prompt (`str` or `List[str]`, *optional*): |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
| prompt_embeds (`torch.FloatTensor`, *optional*): |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
| provided, text embeddings will be generated from `prompt` input argument. |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
| argument. |
| """ |
| if prompt is not None and isinstance(prompt, str): |
| batch_size = 1 |
| elif prompt is not None and isinstance(prompt, list): |
| batch_size = len(prompt) |
| else: |
| raise ValueError( |
| f"`prompt` should be either a string or a list of strings, but got {type(prompt)}." |
| ) |
|
|
| text_inputs = self.tokenizer( |
| prompt, |
| padding="max_length", |
| max_length=self.tokenizer.model_max_length, |
| truncation=True, |
| return_tensors="pt", |
| ) |
| text_input_ids = text_inputs.input_ids |
| untruncated_ids = self.tokenizer( |
| prompt, padding="longest", return_tensors="pt" |
| ).input_ids |
|
|
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
| text_input_ids, untruncated_ids |
| ): |
| removed_text = self.tokenizer.batch_decode( |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
| ) |
| logger.warning( |
| "The following part of your input was truncated because CLIP can only handle sequences up to" |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
| ) |
|
|
| if ( |
| hasattr(self.text_encoder.config, "use_attention_mask") |
| and self.text_encoder.config.use_attention_mask |
| ): |
| attention_mask = text_inputs.attention_mask.to(device) |
| else: |
| attention_mask = None |
|
|
| prompt_embeds = self.text_encoder( |
| text_input_ids.to(device), |
| attention_mask=attention_mask, |
| ) |
| prompt_embeds = prompt_embeds[0] |
|
|
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
| bs_embed, seq_len, _ = prompt_embeds.shape |
| |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
| prompt_embeds = prompt_embeds.view( |
| bs_embed * num_images_per_prompt, seq_len, -1 |
| ) |
|
|
| |
| if do_classifier_free_guidance: |
| uncond_tokens: List[str] |
| if negative_prompt is None: |
| uncond_tokens = [""] * batch_size |
| elif type(prompt) is not type(negative_prompt): |
| raise TypeError( |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
| f" {type(prompt)}." |
| ) |
| elif isinstance(negative_prompt, str): |
| uncond_tokens = [negative_prompt] |
| elif batch_size != len(negative_prompt): |
| raise ValueError( |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
| " the batch size of `prompt`." |
| ) |
| else: |
| uncond_tokens = negative_prompt |
|
|
| max_length = prompt_embeds.shape[1] |
| uncond_input = self.tokenizer( |
| uncond_tokens, |
| padding="max_length", |
| max_length=max_length, |
| truncation=True, |
| return_tensors="pt", |
| ) |
|
|
| if ( |
| hasattr(self.text_encoder.config, "use_attention_mask") |
| and self.text_encoder.config.use_attention_mask |
| ): |
| attention_mask = uncond_input.attention_mask.to(device) |
| else: |
| attention_mask = None |
|
|
| negative_prompt_embeds = self.text_encoder( |
| uncond_input.input_ids.to(device), |
| attention_mask=attention_mask, |
| ) |
| negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
| |
| seq_len = negative_prompt_embeds.shape[1] |
|
|
| negative_prompt_embeds = negative_prompt_embeds.to( |
| dtype=self.text_encoder.dtype, device=device |
| ) |
|
|
| negative_prompt_embeds = negative_prompt_embeds.repeat( |
| 1, num_images_per_prompt, 1 |
| ) |
| negative_prompt_embeds = negative_prompt_embeds.view( |
| batch_size * num_images_per_prompt, seq_len, -1 |
| ) |
|
|
| |
| |
| |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
| return prompt_embeds |
|
|
| def decode_latents(self, latents): |
| latents = 1 / self.vae.config.scaling_factor * latents |
| image = self.vae.decode(latents).sample |
| image = (image / 2 + 0.5).clamp(0, 1) |
| |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
| return image |
|
|
| def prepare_extra_step_kwargs(self, generator, eta): |
| |
| |
| |
| |
|
|
| accepts_eta = "eta" in set( |
| inspect.signature(self.scheduler.step).parameters.keys() |
| ) |
| extra_step_kwargs = {} |
| if accepts_eta: |
| extra_step_kwargs["eta"] = eta |
|
|
| |
| accepts_generator = "generator" in set( |
| inspect.signature(self.scheduler.step).parameters.keys() |
| ) |
| if accepts_generator: |
| extra_step_kwargs["generator"] = generator |
| return extra_step_kwargs |
|
|
| def prepare_latents( |
| self, |
| batch_size, |
| num_channels_latents, |
| height, |
| width, |
| dtype, |
| device, |
| generator, |
| latents=None, |
| ): |
| shape = ( |
| batch_size, |
| num_channels_latents, |
| height // self.vae_scale_factor, |
| width // self.vae_scale_factor, |
| ) |
| if isinstance(generator, list) and len(generator) != batch_size: |
| raise ValueError( |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
| ) |
|
|
| if latents is None: |
| latents = randn_tensor( |
| shape, generator=generator, device=device, dtype=dtype |
| ) |
| else: |
| latents = latents.to(device) |
|
|
| |
| latents = latents * self.scheduler.init_noise_sigma |
| return latents |
|
|
| def encode_image(self, image, device, num_images_per_prompt): |
| dtype = next(self.image_encoder.parameters()).dtype |
|
|
| if image.dtype == np.float32: |
| image = (image * 255).astype(np.uint8) |
| |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values |
| image = image.to(device=device, dtype=dtype) |
| |
| image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
| return torch.zeros_like(image_embeds), image_embeds |
|
|
| def encode_image_latents(self, image, device, num_images_per_prompt): |
| |
| dtype = next(self.image_encoder.parameters()).dtype |
|
|
| image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) |
| image = 2 * image - 1 |
| image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False) |
| image = image.to(dtype=dtype) |
|
|
| posterior = self.vae.encode(image).latent_dist |
| latents = posterior.sample() * self.vae.config.scaling_factor |
| latents = latents.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
| return torch.zeros_like(latents), latents |
|
|
| @torch.no_grad() |
| def __call__( |
| self, |
| prompt: str = "", |
| image: Optional[np.ndarray] = None, |
| height: int = 256, |
| width: int = 256, |
| num_inference_steps: int = 50, |
| guidance_scale: float = 7.0, |
| negative_prompt: str = "", |
| num_images_per_prompt: int = 1, |
| eta: float = 0.0, |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
| output_type: Optional[str] = "numpy", |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
| callback_steps: int = 1, |
| num_frames: int = 4, |
| device=torch.device("cuda:0"), |
| ): |
| self.unet = self.unet.to(device=device) |
| self.vae = self.vae.to(device=device) |
| self.text_encoder = self.text_encoder.to(device=device) |
|
|
| |
| |
| |
| do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
| |
| self.scheduler.set_timesteps(num_inference_steps, device=device) |
| timesteps = self.scheduler.timesteps |
|
|
| |
| if image is not None: |
| assert isinstance(image, np.ndarray) and image.dtype == np.float32 |
| self.image_encoder = self.image_encoder.to(device=device) |
| image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt) |
| image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt) |
| |
| _prompt_embeds = self._encode_prompt( |
| prompt=prompt, |
| device=device, |
| num_images_per_prompt=num_images_per_prompt, |
| do_classifier_free_guidance=do_classifier_free_guidance, |
| negative_prompt=negative_prompt, |
| ) |
| prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2) |
|
|
| |
| actual_num_frames = num_frames if image is None else num_frames + 1 |
| latents: torch.Tensor = self.prepare_latents( |
| actual_num_frames * num_images_per_prompt, |
| 4, |
| height, |
| width, |
| prompt_embeds_pos.dtype, |
| device, |
| generator, |
| None, |
| ) |
|
|
| if image is not None: |
| camera = get_camera(num_frames, elevation=5, extra_view=True).to(dtype=latents.dtype, device=device) |
| else: |
| camera = get_camera(num_frames, elevation=15, extra_view=False).to(dtype=latents.dtype, device=device) |
| camera = camera.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
| |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
| |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
| with self.progress_bar(total=num_inference_steps) as progress_bar: |
| for i, t in enumerate(timesteps): |
| |
| multiplier = 2 if do_classifier_free_guidance else 1 |
| latent_model_input = torch.cat([latents] * multiplier) |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
| unet_inputs = { |
| 'x': latent_model_input, |
| 'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device), |
| 'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames), |
| 'num_frames': actual_num_frames, |
| 'camera': torch.cat([camera] * multiplier), |
| } |
|
|
| if image is not None: |
| unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames) |
| unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) |
| |
| |
| noise_pred = self.unet.forward(**unet_inputs) |
|
|
| |
| if do_classifier_free_guidance: |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
| noise_pred = noise_pred_uncond + guidance_scale * ( |
| noise_pred_text - noise_pred_uncond |
| ) |
|
|
| |
| latents: torch.Tensor = self.scheduler.step( |
| noise_pred, t, latents, **extra_step_kwargs, return_dict=False |
| )[0] |
|
|
| |
| if i == len(timesteps) - 1 or ( |
| (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
| ): |
| progress_bar.update() |
| if callback is not None and i % callback_steps == 0: |
| callback(i, t, latents) |
|
|
| |
| if output_type == "latent": |
| image = latents |
| elif output_type == "pil": |
| image = self.decode_latents(latents) |
| image = self.numpy_to_pil(image) |
| else: |
| image = self.decode_latents(latents) |
|
|
| |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
| self.final_offload_hook.offload() |
|
|
| return image |
|
|