# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GraniteMoe model.""" from collections.abc import Iterable from typing import Optional import torch from torch import nn from transformers.models.granitemoe import GraniteMoeConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (QKVParallelLinear, ReplicatedLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization.base_config import ( QuantizationConfig) from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from . import mixtral from .interfaces import SupportsLoRA, SupportsPP from .utils import AutoWeightsLoader, make_layers, maybe_prefix class GraniteMoeMoE(nn.Module): """A tensor-parallel MoE implementation for GraniteMoe that shards each expert across all ranks. Each expert's weights are sharded across all ranks and a fused MoE kernel is used for the forward pass, and finally we reduce the outputs across ranks. """ def __init__(self, num_experts: int, top_k: int, hidden_size: int, intermediate_size: int, params_dtype: Optional[torch.dtype] = None, quant_config: Optional[QuantizationConfig] = None, tp_size: Optional[int] = None, prefix: str = ""): super().__init__() self.hidden_size = hidden_size # Gate always runs at half / full precision for now. self.gate = ReplicatedLinear(hidden_size, num_experts, bias=False, params_dtype=params_dtype, quant_config=None, prefix=f"{prefix}.gate") self.experts = FusedMoE(num_experts=num_experts, top_k=top_k, hidden_size=hidden_size, intermediate_size=intermediate_size, params_dtype=params_dtype, reduce_results=True, renormalize=True, quant_config=quant_config, tp_size=tp_size, prefix=f"{prefix}.experts") def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # NOTE: hidden_states can have either 1D or 2D shape. orig_shape = hidden_states.shape hidden_states = hidden_states.view(-1, self.hidden_size) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) final_hidden_states = self.experts(hidden_states, router_logits) return final_hidden_states.view(orig_shape) class GraniteMoeAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, rope_theta: float = 10000, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, attention_multiplier: Optional[float] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = (attention_multiplier if attention_multiplier is not None else self.head_dim**-1) self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=False, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=int(self.rope_theta), is_neox_style=True, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v) output, _ = self.o_proj(attn_output) return output class GraniteMoeDecoderLayer(nn.Module): def __init__( self, config: GraniteMoeConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 10000) self.self_attn = GraniteMoeAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.self_attn", attention_multiplier=config.attention_multiplier) self.block_sparse_moe = GraniteMoeMoE( num_experts=config.num_local_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, quant_config=quant_config, prefix=f"{prefix}.block_sparse_moe") self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.residual_multiplier = config.residual_multiplier def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, ) hidden_states = residual + hidden_states * self.residual_multiplier residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.block_sparse_moe(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier return hidden_states @support_torch_compile class GraniteMoeModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.config = config self.quant_config = quant_config # Required by MixtralModel lora_vocab = (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) if lora_config else 0 self.vocab_size = config.vocab_size + lora_vocab self.org_vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, ) self.embedding_multiplier = config.embedding_multiplier self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: GraniteMoeDecoderLayer( config, cache_config, quant_config=quant_config, prefix=prefix ), prefix=f"{prefix}.layers") self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) hidden_states *= self.embedding_multiplier residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for layer in self.layers[self.start_layer:self.end_layer]: hidden_states = layer(positions, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, "residual": residual }) hidden_states = self.norm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: new_weights = {} for n, p in weights: if n.endswith('.block_sparse_moe.input_linear.weight'): for e in range(p.size(0)): w1_name = n.replace( '.block_sparse_moe.input_linear.weight', f".block_sparse_moe.experts.{e}.w1.weight") w3_name = n.replace( '.block_sparse_moe.input_linear.weight', f".block_sparse_moe.experts.{e}.w3.weight") w1_param, w3_param = p[e].chunk(2, dim=0) assert w1_name not in new_weights assert w3_name not in new_weights new_weights[w1_name] = w1_param new_weights[w3_name] = w3_param elif n.endswith('.block_sparse_moe.output_linear.weight'): for e in range(p.size(0)): w2_name = n.replace( '.block_sparse_moe.output_linear.weight', f".block_sparse_moe.experts.{e}.w2.weight") w2_param = p[e] assert w2_name not in new_weights new_weights[w2_name] = w2_param elif n.endswith('.block_sparse_moe.router.layer.weight'): gate_name = n.replace('.block_sparse_moe.router.layer.weight', ".block_sparse_moe.gate.weight") assert gate_name not in new_weights new_weights[gate_name] = p else: new_weights[n] = p return mixtral.MixtralModel.load_weights(self, new_weights.items()) class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP): fall_back_to_pt_during_load = False packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], } # LoRA specific attributes embedding_modules = { "embed_tokens": "input_embeddings", "lm_head": "output_embeddings", } embedding_padding_modules = ["lm_head"] def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.config = config self.lora_config = lora_config self.model = GraniteMoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) self.unpadded_vocab_size = config.vocab_size if lora_config: self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size, padding_size=DEFAULT_VOCAB_PADDING_SIZE # We need bigger padding if using lora for kernel # compatibility if not lora_config else lora_config.lora_vocab_padding_size, quant_config=quant_config, ) if config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, scale=1 / self.config.logits_scaling) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def make_empty_intermediate_tensors( self, batch_size: int, dtype: torch.dtype, device: torch.device) -> IntermediateTensors: return IntermediateTensors({ "hidden_states": torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), "residual": torch.zeros((batch_size, self.config.hidden_size), dtype=dtype, device=device), }) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)