# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-NeoX model compatible with HuggingFace weights.""" from collections.abc import Iterable from typing import Optional, Union import torch from torch import nn from transformers import GPTNeoXConfig from vllm.attention import Attention from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.model_executor.layers.activation import get_act_fn from vllm.model_executor.layers.linear import (ColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors from .interfaces import SupportsPP from .utils import (AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) class GPTNeoXAttention(nn.Module): def __init__( self, config: GPTNeoXConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.total_num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.total_num_heads self.bias = getattr(config, "attention_bias", True) tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.query_key_value = QKVParallelLinear( config.hidden_size, self.head_size, self.total_num_heads, bias=self.bias, quant_config=quant_config, ) self.dense = RowParallelLinear( config.hidden_size, config.hidden_size, bias=self.bias, quant_config=quant_config, ) scaling = self.head_size**-0.5 rotary_dim = int(self.head_size * config.rotary_pct) assert rotary_dim % 2 == 0 rope_theta = getattr(config, "rope_theta", 10000) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.rotary_emb = get_rope( self.head_size, rotary_dim=rotary_dim, max_position=max_position_embeddings, base=rope_theta, ) self.attn = Attention(self.num_heads, self.head_size, scaling, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v) output, _ = self.dense(attn_output) return output class GPTNeoXMLP(nn.Module): def __init__( self, config: GPTNeoXConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.dense_h_to_4h = ColumnParallelLinear( config.hidden_size, config.intermediate_size, quant_config=quant_config, ) self.dense_4h_to_h = RowParallelLinear( config.intermediate_size, config.hidden_size, quant_config=quant_config, ) self.act = get_act_fn(config.hidden_act) def forward(self, hidden_states): hidden_states, _ = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__( self, config: GPTNeoXConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = GPTNeoXAttention(config, cache_config, quant_config, prefix=f"{prefix}.attention") self.mlp = GPTNeoXMLP(config, quant_config) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, ) -> torch.Tensor: attn_input = self.input_layernorm(hidden_states) attn_output = self.attention( position_ids=position_ids, hidden_states=attn_input, ) if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_input = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_input = self.post_attention_layernorm(attn_output) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output return hidden_states @support_torch_compile class GPTNeoXModel(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config self.config = config self.embed_in = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: GPTNeoXLayer( config, cache_config, quant_config, prefix=prefix), prefix=f"{prefix}.layers", ) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory(["hidden_states"], config.hidden_size)) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_in(input_ids) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors], inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) else: hidden_states = intermediate_tensors["hidden_states"] for layer in self.layers[self.start_layer:self.end_layer]: hidden_states = layer(position_ids, hidden_states) if not get_pp_group().is_last_rank: return IntermediateTensors({"hidden_states": hidden_states}) hidden_states = self.final_layer_norm(hidden_states) return hidden_states def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: params_dict = dict(self.named_parameters()) loaded_params: set[str] = set() for name, loaded_weight in weights: if ("attention.bias" in name or "attention.masked_bias" in name or "rotary_emb.inv_freq" in name): continue if ("rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): # Models trained using OpenRLHF may include # these tensors in the checkpoint. Skip them. continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] if "query_key_value" in name: # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of # (num_heads * 3 * head_size), while the # required shape is (3 * num_heads * head_size). # Thus, we need weight conversion. output_dim = getattr(param, "output_dim", None) num_heads = self.config.num_attention_heads if output_dim is not None: loaded_weight_shape = loaded_weight.shape loaded_weight = loaded_weight.view( loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + loaded_weight_shape[output_dim + 1:]) loaded_weight = loaded_weight.transpose( output_dim, output_dim + 1) loaded_weight = loaded_weight.reshape(loaded_weight_shape) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class GPTNeoXForCausalLM(nn.Module, SupportsPP): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.config = config self.quant_config = quant_config self.gpt_neox = GPTNeoXModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "gpt_neox")) self.embed_out = ParallelLMHead( config.vocab_size, config.hidden_size, quant_config=quant_config, ) if self.config.tie_word_embeddings: self.embed_out.weight = self.gpt_neox.embed_in.weight self.logits_processor = LogitsProcessor(config.vocab_size) self.make_empty_intermediate_tensors = ( self.gpt_neox.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.gpt_neox.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.gpt_neox(input_ids, positions, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.embed_out, hidden_states, sampling_metadata) return logits def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) return loader.load_weights(weights)