# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py """Inference-only Deepseek-VL2 model compatible with HuggingFace weights.""" import math from collections.abc import Iterable, Mapping, Sequence from typing import Literal, Optional, TypedDict, Union import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from transformers import BatchFeature from vllm.config import VllmConfig from vllm.model_executor import SamplingMetadata from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.utils import set_default_torch_dtype from vllm.multimodal import MULTIMODAL_REGISTRY from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig, MultiModalKwargs, NestedTensors) from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems, ImageSize, MultiModalDataItems) from vllm.multimodal.processing import (BaseMultiModalProcessor, BaseProcessingInfo, MultiModalHashes, PromptReplacement, PromptUpdate) from vllm.multimodal.profiling import BaseDummyInputsBuilder from vllm.sequence import IntermediateTensors from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config, MlpProjectorConfig, VisionEncoderConfig) from vllm.transformers_utils.processors.deepseek_vl2 import ( DeepseekVLV2Processor) from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config from vllm.utils import is_list_of from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP from .utils import (AutoWeightsLoader, WeightsMapper, flatten_bn, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) # The image token id may be various _IMAGE_TOKEN = "" class DeepseekVL2ImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: Union[torch.Tensor, list[torch.Tensor]] """ Shape: `(batch_size * num_images, num_channels, height, width)` """ images_spatial_crop: torch.Tensor """ Shape: `(batch_size * num_images, 2)` """ class DeepseekVL2VImageEmbeddingInputs(TypedDict): type: Literal["image_embeds"] data: Union[torch.Tensor, list[torch.Tensor]] """Shape: `(batch_size * num_images, image_feature_size, hidden_size)` `hidden_size` must match the hidden size of language model backbone. """ DeepseekVL2ImageInputs = Union[DeepseekVL2ImagePixelInputs, DeepseekVL2VImageEmbeddingInputs] class MlpProjector(nn.Module): def __init__(self, cfg: MlpProjectorConfig): super().__init__() self.cfg = cfg assert not cfg.token_pooling, ( "Token pooling is not supported currently.") if cfg.projector_type == "downsample_mlp_gelu": mlp_depth = cfg.depth mlp_ratio = cfg.mlp_ratio modules = [ nn.Linear( cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio) ] for _ in range(1, mlp_depth - 1): modules.append(nn.GELU()) modules.append( nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio)) modules.append(nn.GELU()) modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed)) modules = nn.Sequential(*modules) else: raise NotImplementedError( f"Unsupported projector type: {cfg.projector_type}") self.layers = modules def forward(self, x): bs, hw, input_dim = x.shape h = w = int((hw)**0.5) """compute padding""" if h % self.cfg.downsample_ratio: pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio else: pad = 0 x = x.reshape(bs, h, w, input_dim) if pad > 0: x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0) """4 to 1 concat""" x = x.permute(0, 3, 1, 2) # B, C, H, W x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4 x = x.permute(0, 2, 1) return self.layers(x) class DeepseekVL2ProcessingInfo(BaseProcessingInfo): def get_hf_config(self): return self.ctx.get_hf_config(DeepseekVLV2Config) def get_hf_processor(self, **kwargs: object): return self.ctx.get_hf_processor(DeepseekVLV2Processor, **kwargs) def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]: return {"image": None} def get_num_image_tokens(self, *, image_width: int, image_height: int, cropping: bool = True) -> int: hf_processor = self.get_hf_processor() image_size = hf_processor.image_size patch_size = hf_processor.patch_size downsample_ratio = hf_processor.downsample_ratio if cropping: best_width, best_height = hf_processor.select_best_resolution( (image_width, image_height)) num_width_tiles, num_height_tiles = (best_width // image_size, best_height // image_size) else: num_width_tiles = num_height_tiles = 1 h = w = math.ceil((image_size // patch_size) / downsample_ratio) global_views_tokens = h * (w + 1) local_views_tokens = (num_height_tiles * h) * (num_width_tiles * w + 1) return global_views_tokens + local_views_tokens + 1 def get_image_size_with_most_features(self) -> ImageSize: hf_config = self.get_hf_config() candidate_resolutions = hf_config.candidate_resolutions height, width = max(candidate_resolutions, key=lambda x: self.get_num_image_tokens( image_width=x[1], image_height=x[0])) return ImageSize(width=width, height=height) class DeepseekVL2DummyInputsBuilder( BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]): def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str: num_images = mm_counts.get("image", 0) processor = self.info.get_hf_processor() image_token = processor.image_token return image_token * num_images def get_dummy_mm_data( self, seq_len: int, mm_counts: Mapping[str, int], ) -> MultiModalDataDict: num_images = mm_counts.get("image", 0) max_image_size = self.info.get_image_size_with_most_features() return { "image": self._get_dummy_images(width=max_image_size.width, height=max_image_size.height, num_images=num_images) } class DeepseekVL2MultiModalProcessor( BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]): def _call_hf_processor( self, prompt: str, mm_data: Mapping[str, object], mm_kwargs: Mapping[str, object], ) -> BatchFeature: if mm_data: processed_outputs = self.info.ctx.call_hf_processor( self.info.get_hf_processor(**mm_kwargs), dict(prompt=prompt, **mm_data), mm_kwargs, ) pixel_values = processed_outputs["pixel_values"] # split pixel values into patches corresponding to each image images_spatial_crop = processed_outputs["images_spatial_crop"] patches_per_image = [ x.prod().item() + 1 for x in images_spatial_crop ] pixel_values = pixel_values.split(patches_per_image) processed_outputs["pixel_values"] = pixel_values else: tokenizer = self.info.get_tokenizer() processed_outputs = tokenizer(prompt, add_special_tokens=True, return_tensors="pt") return processed_outputs def _get_mm_fields_config( self, hf_inputs: BatchFeature, hf_processor_mm_kwargs: Mapping[str, object], ) -> Mapping[str, MultiModalFieldConfig]: return dict( pixel_values=MultiModalFieldConfig.batched("image"), images_spatial_crop=MultiModalFieldConfig.batched("image"), image_embeds=MultiModalFieldConfig.batched("image"), ) def _get_prompt_updates( self, mm_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], out_mm_kwargs: MultiModalKwargs, ) -> Sequence[PromptUpdate]: hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs) image_token_id = hf_processor.image_token_id assert isinstance(image_token_id, int) def get_replacement_deepseek_vl2(item_idx: int): images = mm_items.get_items( "image", (ImageEmbeddingItems, ImageProcessorItems)) if isinstance(images, ImageEmbeddingItems): num_image_tokens = images.get_feature_size(item_idx) else: image_size = images.get_image_size(item_idx) num_image_tokens = self.info.get_num_image_tokens( image_width=image_size.width, image_height=image_size.height, cropping=len(images) <= 2, ) return [image_token_id] * num_image_tokens return [ PromptReplacement( modality="image", target=[image_token_id], replacement=get_replacement_deepseek_vl2, ) ] def _cached_apply_hf_processor( self, prompt: Union[str, list[int]], mm_data_items: MultiModalDataItems, hf_processor_mm_kwargs: Mapping[str, object], *, return_mm_hashes: bool, ) -> tuple[list[int], MultiModalKwargs, Optional[MultiModalHashes], bool]: # The processor logic is different for len(images) <= 2 vs > 2 # Since the processing cache assumes that the processor output is # invariant of how many images are passed per prompt, we only # perform caching for the most common case if mm_data_items.get_count("image", strict=False) > 2: return self._apply_hf_processor( prompt=prompt, mm_data_items=mm_data_items, hf_processor_mm_kwargs=hf_processor_mm_kwargs, return_mm_hashes=return_mm_hashes, ) return super()._cached_apply_hf_processor( prompt=prompt, mm_data_items=mm_data_items, hf_processor_mm_kwargs=hf_processor_mm_kwargs, return_mm_hashes=return_mm_hashes, ) @MULTIMODAL_REGISTRY.register_processor( DeepseekVL2MultiModalProcessor, info=DeepseekVL2ProcessingInfo, dummy_inputs=DeepseekVL2DummyInputsBuilder) class DeepseekVLV2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP): hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={ "language.": "language_model.", }) def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config: DeepseekVLV2Config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config multimodal_config = vllm_config.model_config.multimodal_config self.config = config self.multimodal_config = multimodal_config self.vision_config = config.vision_config self.projector_config = config.projector_config self.text_config = config.text_config model_config = vllm_config.model_config tokenizer = cached_tokenizer_from_config(model_config) self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN] self.vision = self._init_vision_module(self.vision_config, quant_config, maybe_prefix(prefix, "vision")) self.projector = MlpProjector(self.projector_config) self.tile_tag = config.tile_tag self.global_view_pos = config.global_view_pos # special token for image token sequence format embed_std = 1 / torch.sqrt( torch.tensor(self.projector_config.n_embed, dtype=torch.float32)) if self.tile_tag == "2D": # <|view_separator|>, <|\n|> self.image_newline = nn.Parameter( torch.randn(self.projector_config.n_embed) * embed_std) # This is a typo in original implementation self.view_seperator = nn.Parameter( torch.randn(self.projector_config.n_embed) * embed_std) else: raise ValueError( f"Only 2D tile_tag is supported currently, got: {self.tile_tag}" ) if self.text_config.topk_method == "noaux_tc": architectures = ["DeepseekV3ForCausalLM"] elif not self.text_config.use_mla: architectures = ["DeepseekForCausalLM"] else: architectures = ["DeepseekV2ForCausalLM"] self.language_model = init_vllm_registered_model( vllm_config=vllm_config, hf_config=self.text_config, prefix=maybe_prefix(prefix, "language"), architectures=architectures, ) self.make_empty_intermediate_tensors = ( self.language_model.make_empty_intermediate_tensors) def _init_vision_module( self, vision_config: VisionEncoderConfig, quant_config: Optional[QuantizationConfig], prefix: str = "", ) -> nn.Module: # TODO: refactor vision model through timm wrapper from transformers try: import timm except ImportError: raise ImportError("Please install timm") from ImportError with set_default_torch_dtype(torch.float16): model = timm.create_model( "vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=0, dynamic_img_size=True, dynamic_img_pad=True, ) model = model.to(dtype=torch.get_default_dtype()) return model def _validate_pixel_values( self, data: Union[torch.Tensor, list[torch.Tensor]] ) -> Union[torch.Tensor, list[torch.Tensor]]: h = w = self.vision_config.image_size expected_dims = (3, h, w) def _validate_shape(d: torch.Tensor): actual_dims = tuple(d.shape[1:]) if actual_dims != expected_dims: expected_expr = ("num_patches", *map(str, expected_dims)) raise ValueError( "The expected shape of pixel values per image per batch " f"is {expected_expr}. You supplied {tuple(d.shape)}.") for d in data: _validate_shape(d) return data def _validate_images_spatial_crop( self, data: Union[torch.Tensor, list[torch.Tensor]] ) -> Union[torch.Tensor, list[torch.Tensor]]: expected_dims = 2 def _validate_shape(d: torch.Tensor): actual_dims = d.size(-1) if actual_dims != expected_dims: expected_expr = str(expected_dims) raise ValueError( f"The expected shape of image sizes per image per batch " f"is {expected_expr}. You supplied {tuple(d.shape)}.") for d in data: _validate_shape(d) return data def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[DeepseekVL2ImageInputs]: pixel_values = kwargs.pop("pixel_values", None) images_spatial_crop = kwargs.pop("images_spatial_crop", None) image_embeds = kwargs.pop("image_embeds", None) if pixel_values is None and image_embeds is None: return None if pixel_values is not None: if not isinstance(pixel_values, (torch.Tensor, list)): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") if not isinstance(images_spatial_crop, (torch.Tensor, list)): raise ValueError("Incorrect type of image sizes. " f"Got type: {type(images_spatial_crop)}") return DeepseekVL2ImagePixelInputs( type="pixel_values", data=self._validate_pixel_values(flatten_bn(pixel_values)), images_spatial_crop=self._validate_images_spatial_crop( flatten_bn(images_spatial_crop, concat=True))) if image_embeds is not None: if not isinstance(image_embeds, (torch.Tensor, list)): raise ValueError("Incorrect type of image embeddings. " f"Got type: {type(image_embeds)}") return DeepseekVL2VImageEmbeddingInputs( type="image_embeds", data=flatten_bn(image_embeds), ) raise AssertionError("This line should be unreachable.") def _pixel_values_to_embedding( self, pixel_values: NestedTensors, images_spatial_crop: torch.Tensor, ) -> NestedTensors: # Pixel_values: n_image * batch_size * [patch_per_img, 3, height, width] total_tiles = [x for x in pixel_values] # [batch_all_tiles, 3, height, width] total_tiles = torch.cat(total_tiles, dim=0) # [batch_all_tiles, vit_seq_len, c] images_feature = self.vision.forward_features(total_tiles) # [batch_all_tiles, hw, D] images_embeds = self.projector(images_feature) _, hw, n_dim = images_embeds.shape h = w = int(hw**0.5) # fill image token based on self.tile_tag & self.global_view_pos tile_index = 0 vision_embeddings = [] for jdx in range(images_spatial_crop.size(0)): # extra global & local features num_width_tiles, num_height_tiles = images_spatial_crop[jdx] if num_width_tiles == 0 or num_height_tiles == 0: break num_tiles_in_image = num_width_tiles * num_height_tiles # [hw, D] global_features = images_embeds[tile_index] # [num_height_tiles * num_width_tiles, hw, D] local_features = images_embeds[tile_index + 1:tile_index + 1 + num_tiles_in_image] tile_index += num_tiles_in_image + 1 # format global and local features # ----------------- global view add newline ----------------- # [hw, D] -> [h, w, D] global_features = global_features.view(h, w, n_dim) # [D] -> [h, 1, D] new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h) # cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D] global_features = torch.cat([global_features, new_lines_in_global], dim=1) # [h, w + 1, D] -> [h * (w + 1), D] global_features = global_features.view(-1, n_dim) # ----------------- local view add newline ----------------- # [num_height_tiles * num_width_tiles, h * w, D] -> # [num_height_tiles * h, num_width_tiles * w, D] local_features = rearrange(local_features, "(th tw) (h w) d -> (th h) (tw w) d", th=num_height_tiles, tw=num_width_tiles, h=h, w=w) # [D] -> [num_height_tiles * h, 1, D] new_lines_in_local = repeat(self.image_newline, "d -> (th h) 1 d", th=num_height_tiles, h=h) # [num_height_tiles * h, num_width_tiles * w + 1, D] local_features = torch.cat([local_features, new_lines_in_local], dim=1) # [num_height_tiles * h, num_width_tiles * w + 1, D] # --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D] local_features = local_features.view(-1, n_dim) # merge global and local tiles if self.global_view_pos == "head": global_local_features = torch.cat([ global_features, self.view_seperator[None, :], local_features, ]) else: global_local_features = torch.cat([ local_features, self.view_seperator[None, :], global_features, ]) vision_embeddings.append(global_local_features) return vision_embeddings def _process_image_input( self, image_input: DeepseekVL2ImageInputs) -> torch.Tensor: if image_input["type"] == "image_embeds": image_data = image_input["data"] if is_list_of(image_data, torch.Tensor): # it's already a list of tensors return image_data if len(image_data.shape) == 3: # 3D tensor return list(torch.unbind(image_data, dim=0)) raise ValueError( "We expect batched 2D tensors; " "this can be either a list of 2D tensors or a single 3D tensor." ) pixel_values = image_input["data"] images_spatial_crop = image_input["images_spatial_crop"] return self._pixel_values_to_embedding( pixel_values=pixel_values, images_spatial_crop=images_spatial_crop) def get_language_model(self) -> torch.nn.Module: return self.language_model def get_multimodal_embeddings( self, **kwargs: object) -> Optional[MultiModalEmbeddings]: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return None vision_embeddings = self._process_image_input(image_input) return vision_embeddings def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, ) -> torch.Tensor: inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( input_ids, inputs_embeds, multimodal_embeddings, self.image_token_id) return inputs_embeds def forward(self, input_ids: torch.Tensor, positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs: object): if intermediate_tensors is not None: inputs_embeds = None # NOTE: In v1, inputs_embeds is always generated at model runner, this # condition is for v0 compatibility elif inputs_embeds is None: vision_embeddings = self.get_multimodal_embeddings(**kwargs) inputs_embeds = self.get_input_embeddings(input_ids, vision_embeddings) input_ids = None hidden_states = self.language_model(input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: return self.language_model.compute_logits(hidden_states, sampling_metadata) def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: loader = AutoWeightsLoader(self) autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper) return autoloaded_weights