|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Inference-only GPT-2 model compatible with HuggingFace weights.""" |
|
from collections.abc import Iterable |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import GPT2Config |
|
|
|
from vllm.attention import Attention |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import CacheConfig, VllmConfig |
|
from vllm.distributed.parallel_state import ( |
|
get_pp_group, get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.activation import get_act_fn |
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear, |
|
QKVParallelLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors |
|
|
|
from .interfaces import SupportsPP |
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers, |
|
maybe_prefix) |
|
|
|
|
|
class GPT2Attention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: GPT2Config, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
total_num_heads = config.num_attention_heads |
|
tensor_model_parallel_world_size = ( |
|
get_tensor_model_parallel_world_size()) |
|
assert total_num_heads % tensor_model_parallel_world_size == 0 |
|
self.num_heads = total_num_heads // tensor_model_parallel_world_size |
|
self.head_dim = self.hidden_size // total_num_heads |
|
self.scale = self.head_dim**-0.5 |
|
|
|
self.c_attn = QKVParallelLinear( |
|
self.hidden_size, |
|
self.head_dim, |
|
total_num_heads, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.c_attn", |
|
) |
|
self.c_proj = RowParallelLinear( |
|
self.hidden_size, |
|
self.hidden_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.c_proj", |
|
) |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
scale=self.scale, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
qkv, _ = self.c_attn(hidden_states) |
|
q, k, v = qkv.chunk(chunks=3, dim=-1) |
|
attn_output = self.attn(q, k, v) |
|
attn_output, _ = self.c_proj(attn_output) |
|
return attn_output |
|
|
|
|
|
class GPT2MLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
intermediate_size: int, |
|
config: GPT2Config, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.c_fc = ColumnParallelLinear( |
|
hidden_size, |
|
intermediate_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.c_fc", |
|
) |
|
self.c_proj = RowParallelLinear( |
|
intermediate_size, |
|
hidden_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.c_proj", |
|
) |
|
self.act = get_act_fn(config.activation_function) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states, _ = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states, _ = self.c_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GPT2Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: GPT2Config, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
inner_dim = (config.n_inner if config.n_inner is not None else 4 * |
|
hidden_size) |
|
|
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = GPT2Attention(config, |
|
cache_config, |
|
quant_config, |
|
prefix=f"{prefix}.attn") |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.mlp = GPT2MLP(inner_dim, |
|
config, |
|
quant_config, |
|
prefix=f"{prefix}.mlp") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
hidden_states = self.ln_1(hidden_states) |
|
attn_output = self.attn(hidden_states=hidden_states) |
|
|
|
hidden_states = attn_output + residual |
|
|
|
residual = hidden_states |
|
hidden_states = self.ln_2(hidden_states) |
|
feed_forward_hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = residual + feed_forward_hidden_states |
|
return hidden_states |
|
|
|
|
|
@support_torch_compile |
|
class GPT2Model(nn.Module): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
|
|
self.config = config |
|
assert not config.add_cross_attention |
|
assert not config.scale_attn_by_inverse_layer_idx |
|
assert not config.reorder_and_upcast_attn |
|
self.embed_dim = config.hidden_size |
|
self.wte = VocabParallelEmbedding(config.vocab_size, |
|
self.embed_dim, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.wte") |
|
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) |
|
self.start_layer, self.end_layer, self.h = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: GPT2Block( |
|
config, cache_config, quant_config, prefix=prefix), |
|
prefix=f"{prefix}.h") |
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory(["hidden_states"], |
|
config.n_embd)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.wte(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor], |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings(input_ids) |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = inputs_embeds + position_embeds |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
|
|
for layer in self.h[self.start_layer:self.end_layer]: |
|
hidden_states = layer(hidden_states) |
|
|
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({"hidden_states": hidden_states}) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
return hidden_states |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
params_dict = dict(self.named_parameters(remove_duplicate=False)) |
|
loaded_params: set[str] = set() |
|
for name, loaded_weight in weights: |
|
if ".attn.bias" in name or ".attn.masked_bias" in name: |
|
|
|
|
|
continue |
|
|
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
param = params_dict[name] |
|
|
|
|
|
|
|
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]: |
|
if conv1d_weight_name not in name: |
|
continue |
|
if not name.endswith(".weight"): |
|
continue |
|
loaded_weight = loaded_weight.t() |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
return loaded_params |
|
|
|
|
|
class GPT2LMHeadModel(nn.Module, SupportsPP): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
self.quant_config = quant_config |
|
self.transformer = GPT2Model(vllm_config=vllm_config, |
|
prefix=maybe_prefix( |
|
prefix, "transformer")) |
|
self.lm_head = ParallelLMHead(self.config.vocab_size, |
|
self.config.hidden_size, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.lm_head") |
|
if self.config.tie_word_embeddings: |
|
self.lm_head = self.lm_head.tie_weights(self.transformer.wte) |
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.transformer.make_empty_intermediate_tensors) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.transformer.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.transformer(input_ids, positions, |
|
intermediate_tensors, inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
loader = AutoWeightsLoader(self) |
|
weights = _add_transformer_prefix(weights) |
|
return loader.load_weights(weights) |
|
|
|
|
|
def _add_transformer_prefix( |
|
weights: Iterable[tuple[str, torch.Tensor]] |
|
) -> Iterable[tuple[str, torch.Tensor]]: |
|
for name, tensor in weights: |
|
if not name.startswith('transformer.') and not name.startswith( |
|
"lm_head"): |
|
name = 'transformer.' + name |
|
yield name, tensor |
|
|