dengcao's picture
update
4679932
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
# Copyright 2023 The vLLM team.
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only GPT-2 model compatible with HuggingFace weights."""
from collections.abc import Iterable
from typing import Optional, Union
import torch
from torch import nn
from transformers import GPT2Config
from vllm.attention import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed.parallel_state import (
get_pp_group, get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class GPT2Attention(nn.Module):
def __init__(
self,
config: GPT2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
total_num_heads = config.num_attention_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = self.hidden_size // total_num_heads
self.scale = self.head_dim**-0.5
self.c_attn = QKVParallelLinear(
self.hidden_size,
self.head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_attn",
)
self.c_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
self.attn = Attention(self.num_heads,
self.head_dim,
scale=self.scale,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.c_attn(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
attn_output = self.attn(q, k, v)
attn_output, _ = self.c_proj(attn_output)
return attn_output
class GPT2MLP(nn.Module):
def __init__(
self,
intermediate_size: int,
config: GPT2Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
self.c_fc = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_fc",
)
self.c_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.c_proj",
)
self.act = get_act_fn(config.activation_function)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.c_proj(hidden_states)
return hidden_states
class GPT2Block(nn.Module):
def __init__(
self,
config: GPT2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
hidden_size = config.hidden_size
inner_dim = (config.n_inner if config.n_inner is not None else 4 *
hidden_size)
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(config,
cache_config,
quant_config,
prefix=f"{prefix}.attn")
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(inner_dim,
config,
quant_config,
prefix=f"{prefix}.mlp")
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_output = self.attn(hidden_states=hidden_states)
# residual connection
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
@support_torch_compile
class GPT2Model(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
assert not config.add_cross_attention
assert not config.scale_attn_by_inverse_layer_idx
assert not config.reorder_and_upcast_attn
self.embed_dim = config.hidden_size
self.wte = VocabParallelEmbedding(config.vocab_size,
self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.wte")
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.start_layer, self.end_layer, self.h = make_layers(
config.num_hidden_layers,
lambda prefix: GPT2Block(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.h")
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.n_embd))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for layer in self.h[self.start_layer:self.end_layer]:
hidden_states = layer(hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.ln_f(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if ".attn.bias" in name or ".attn.masked_bias" in name:
# Skip attention mask.
# NOTE: "c_attn.bias" should not be skipped.
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
# The HF's GPT-2 implementation uses Conv1D instead of Linear.
# Because of this, we need to transpose the weights.
# Note(zhuohan): the logic below might break quantized models.
for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
if conv1d_weight_name not in name:
continue
if not name.endswith(".weight"):
continue
loaded_weight = loaded_weight.t()
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class GPT2LMHeadModel(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.transformer = GPT2Model(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "transformer"))
self.lm_head = ParallelLMHead(self.config.vocab_size,
self.config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.lm_head")
if self.config.tie_word_embeddings:
self.lm_head = self.lm_head.tie_weights(self.transformer.wte)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions,
intermediate_tensors, inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
weights = _add_transformer_prefix(weights)
return loader.load_weights(weights)
def _add_transformer_prefix(
weights: Iterable[tuple[str, torch.Tensor]]
) -> Iterable[tuple[str, torch.Tensor]]:
for name, tensor in weights:
if not name.startswith('transformer.') and not name.startswith(
"lm_head"):
name = 'transformer.' + name
yield name, tensor