|
|
|
|
|
|
|
from collections.abc import Iterable |
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from vllm.attention import Attention |
|
from vllm.config import CacheConfig, VllmConfig |
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, |
|
get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.fused_moe import FusedMoE |
|
from vllm.model_executor.layers.linear import (QKVParallelLinear, |
|
ReplicatedLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import ( |
|
default_weight_loader, maybe_remap_kv_scale_name) |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors |
|
from vllm.transformers_utils.configs.dbrx import DbrxConfig |
|
|
|
from .interfaces import SupportsPP |
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers, |
|
maybe_prefix) |
|
|
|
|
|
class DbrxRouter(nn.Module): |
|
"""A Router implementation for DBRX that returns logits for each expert |
|
per token. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
params_dtype: Optional[torch.dtype] = None, |
|
): |
|
super().__init__() |
|
self.tp_size = get_tensor_model_parallel_world_size() |
|
self.num_total_experts = config.ffn_config.moe_num_experts |
|
self.d_model = config.d_model |
|
self.layer = ReplicatedLinear( |
|
self.d_model, |
|
self.num_total_experts, |
|
bias=False, |
|
params_dtype=params_dtype, |
|
quant_config=None, |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
router_logits, _ = self.layer(hidden_states) |
|
return router_logits |
|
|
|
|
|
class DbrxExperts(FusedMoE): |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
params_dtype: Optional[torch.dtype] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__( |
|
num_experts=config.ffn_config.moe_num_experts, |
|
top_k=config.ffn_config.moe_top_k, |
|
hidden_size=config.d_model, |
|
intermediate_size=config.ffn_config.ffn_hidden_size, |
|
params_dtype=params_dtype, |
|
reduce_results=True, |
|
renormalize=True, |
|
quant_config=quant_config, |
|
tp_size=get_tensor_model_parallel_world_size(), |
|
prefix=prefix, |
|
) |
|
self.config = config |
|
self.d_model = config.d_model |
|
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size // |
|
self.tp_size) |
|
|
|
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, |
|
weight_name: str, param_name: str): |
|
tp_rank = get_tensor_model_parallel_rank() |
|
param_data = param.data |
|
shard_size = self.intermediate_size |
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) |
|
|
|
|
|
if weight_name.endswith("w1"): |
|
if param_name.endswith("weight"): |
|
loaded_weight = torch.reshape( |
|
loaded_weight, |
|
[-1, self.intermediate_size * self.tp_size, self.d_model], |
|
) |
|
param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :] |
|
elif param_name.endswith("weight_scale"): |
|
param_data[:, 0] = loaded_weight |
|
else: |
|
param_data = loaded_weight |
|
if weight_name.endswith("v1"): |
|
if param_name.endswith("weight"): |
|
loaded_weight = torch.reshape( |
|
loaded_weight, |
|
[-1, self.intermediate_size * self.tp_size, self.d_model], |
|
) |
|
param_data[:, shard_size:2 * |
|
shard_size, :] = loaded_weight[:, shard, :] |
|
elif param_name.endswith("weight_scale"): |
|
param_data[:, 1] = loaded_weight |
|
else: |
|
param_data[:] = loaded_weight |
|
if weight_name.endswith("w2"): |
|
if param_name.endswith("weight"): |
|
loaded_weight = torch.reshape( |
|
loaded_weight, |
|
[-1, self.intermediate_size * self.tp_size, self.d_model], |
|
).transpose(1, 2) |
|
param_data[:] = loaded_weight[:, :, shard] |
|
else: |
|
param_data[:] = loaded_weight |
|
|
|
|
|
class DbrxMoE(nn.Module): |
|
"""A tensor-parallel MoE implementation for DBRX. |
|
|
|
Each expert's weights are sharded across all ranks and a fused MoE |
|
kernel is used for the forward pass, and finally we reduce the outputs |
|
across ranks. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
params_dtype: Optional[torch.dtype] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.d_model = config.d_model |
|
if params_dtype is None: |
|
params_dtype = torch.get_default_dtype() |
|
self.params_dtype = params_dtype |
|
|
|
self.router = DbrxRouter(config, self.params_dtype) |
|
|
|
self.experts = DbrxExperts(config=config, |
|
quant_config=quant_config, |
|
params_dtype=self.params_dtype, |
|
prefix=f"{prefix}.experts") |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
orig_shape = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, self.d_model) |
|
|
|
router_logits = self.router(hidden_states) |
|
final_hidden_states = self.experts(hidden_states, router_logits) |
|
return final_hidden_states.view(orig_shape) |
|
|
|
|
|
class DbrxAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.d_model = config.d_model |
|
self.total_num_heads = config.n_heads |
|
self.head_dim = self.d_model // self.total_num_heads |
|
self.total_num_kv_heads = config.attn_config.kv_n_heads |
|
self.clip_qkv = config.attn_config.clip_qkv |
|
self.rope_theta = config.attn_config.rope_theta |
|
self.max_position = config.max_seq_len |
|
|
|
|
|
self.Wqkv = QKVParallelLinear( |
|
self.d_model, |
|
self.head_dim, |
|
self.total_num_heads, |
|
self.total_num_kv_heads, |
|
bias=False, |
|
quant_config=quant_config, |
|
) |
|
self.out_proj = RowParallelLinear( |
|
self.d_model, |
|
self.d_model, |
|
bias=False, |
|
quant_config=quant_config, |
|
) |
|
self.rotary_emb = get_rope( |
|
self.head_dim, |
|
rotary_dim=self.head_dim, |
|
max_position=self.max_position, |
|
base=int(self.rope_theta), |
|
is_neox_style=True, |
|
) |
|
|
|
tp_world_size = get_tensor_model_parallel_world_size() |
|
self.tp_size = tp_world_size |
|
assert self.total_num_heads % tp_world_size == 0 |
|
self.num_heads = self.total_num_heads // tp_world_size |
|
if self.total_num_kv_heads >= tp_world_size: |
|
|
|
|
|
assert self.total_num_kv_heads % tp_world_size == 0 |
|
else: |
|
|
|
|
|
assert tp_world_size % self.total_num_kv_heads == 0 |
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size) |
|
self.q_size = self.num_heads * self.head_dim |
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
self.scaling = self.head_dim**-0.5 |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
self.scaling, |
|
num_kv_heads=self.num_kv_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
position_ids: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
qkv, _ = self.Wqkv(hidden_states) |
|
if self.clip_qkv is not None: |
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) |
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
q, k = self.rotary_emb(position_ids, q, k) |
|
attn_output = self.attn(q, k, v) |
|
hidden_states, _ = self.out_proj(attn_output) |
|
return hidden_states |
|
|
|
|
|
class DbrxFusedNormAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.d_model = config.d_model |
|
self.attn = DbrxAttention(config, |
|
cache_config, |
|
quant_config, |
|
prefix=f"{prefix}.attn") |
|
self.norm_1 = nn.LayerNorm(self.d_model) |
|
self.norm_2 = nn.LayerNorm(self.d_model) |
|
|
|
def forward( |
|
self, |
|
position_ids: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
residual = hidden_states |
|
hidden_states = self.norm_1(hidden_states) |
|
x = self.attn( |
|
position_ids=position_ids, |
|
hidden_states=hidden_states, |
|
) |
|
hidden_states = residual + x |
|
residual = hidden_states |
|
hidden_states = self.norm_2(hidden_states) |
|
return hidden_states, residual |
|
|
|
|
|
class DbrxBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: DbrxConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.norm_attn_norm = DbrxFusedNormAttention( |
|
config, |
|
cache_config, |
|
quant_config, |
|
prefix=f"{prefix}.norm_attn_norm") |
|
self.ffn = DbrxMoE(config, quant_config, prefix=f"{prefix}.ffn") |
|
|
|
def forward( |
|
self, |
|
position_ids: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
hidden_states, residual = self.norm_attn_norm( |
|
position_ids=position_ids, |
|
hidden_states=hidden_states, |
|
) |
|
hidden_states = self.ffn(hidden_states) |
|
hidden_states = hidden_states + residual |
|
return hidden_states |
|
|
|
|
|
class DbrxModel(nn.Module): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
|
|
self.quant_config = quant_config |
|
self.wte = VocabParallelEmbedding( |
|
config.vocab_size, |
|
config.d_model, |
|
) |
|
self.start_layer, self.end_layer, self.blocks = make_layers( |
|
config.n_layers, |
|
lambda prefix: DbrxBlock( |
|
config, cache_config, quant_config, prefix=prefix), |
|
prefix=f"{prefix}.blocks", |
|
) |
|
self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5) |
|
for module in self.modules(): |
|
if hasattr(module, "bias") and isinstance(module.bias, |
|
nn.Parameter): |
|
|
|
module.register_parameter("bias", None) |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory(["hidden_states"], |
|
config.d_model)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.wte(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
else: |
|
assert intermediate_tensors |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
for block in self.blocks[self.start_layer:self.end_layer]: |
|
hidden_states = block(position_ids, hidden_states) |
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({"hidden_states": hidden_states}) |
|
hidden_states = self.norm_f(hidden_states) |
|
return hidden_states |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
expert_params_mapping = [( |
|
"w13" if weight_name in ["w1", "v1"] else "w2", |
|
f"mlp.{weight_name}", |
|
) for weight_name in ["w1", "v1", "w2"]] |
|
params_dict = dict(self.named_parameters(remove_duplicate=False)) |
|
loaded_params: set[str] = set() |
|
|
|
for name, loaded_weight in weights: |
|
if (self.quant_config is not None and |
|
(scale_name := self.quant_config.get_cache_scale(name))): |
|
|
|
param = params_dict[scale_name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else |
|
loaded_weight[0]) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(scale_name) |
|
continue |
|
|
|
if name.endswith(("w1", "w2", "v1")): |
|
name = name + "_weight" |
|
for param_name, weight_name in expert_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, weight_name, name) |
|
break |
|
|
|
else: |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict) |
|
if name is None: |
|
continue |
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
return loaded_params |
|
|
|
|
|
class DbrxForCausalLM(nn.Module, SupportsPP): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
if config.tie_word_embeddings: |
|
raise ValueError( |
|
"tie_word_embeddings is not supported for Dbrx models.") |
|
self.quant_config = quant_config |
|
self.unpadded_vocab_size = config.vocab_size |
|
self.transformer = DbrxModel(vllm_config=vllm_config, |
|
prefix=maybe_prefix( |
|
prefix, "transformer")) |
|
self.lm_head = ParallelLMHead( |
|
config.vocab_size, |
|
config.d_model, |
|
org_num_embeddings=config.vocab_size, |
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE, |
|
quant_config=quant_config, |
|
) |
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, |
|
config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.transformer.make_empty_intermediate_tensors) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.transformer.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.transformer(input_ids, positions, |
|
intermediate_tensors, inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
loader = AutoWeightsLoader(self) |
|
return loader.load_weights(weights) |
|
|