dengcao's picture
update
4679932
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from typing import Optional, Union
import torch
import torch.nn as nn
from vllm.attention import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size)
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.linear import (QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.dbrx import DbrxConfig
from .interfaces import SupportsPP
from .utils import (AutoWeightsLoader, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
class DbrxRouter(nn.Module):
"""A Router implementation for DBRX that returns logits for each expert
per token.
"""
def __init__(
self,
config: DbrxConfig,
params_dtype: Optional[torch.dtype] = None,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.ffn_config.moe_num_experts
self.d_model = config.d_model
self.layer = ReplicatedLinear(
self.d_model,
self.num_total_experts,
bias=False,
params_dtype=params_dtype,
quant_config=None,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
router_logits, _ = self.layer(hidden_states)
return router_logits
class DbrxExperts(FusedMoE):
def __init__(
self,
config: DbrxConfig,
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[torch.dtype] = None,
prefix: str = "",
):
super().__init__(
num_experts=config.ffn_config.moe_num_experts,
top_k=config.ffn_config.moe_top_k,
hidden_size=config.d_model,
intermediate_size=config.ffn_config.ffn_hidden_size,
params_dtype=params_dtype,
reduce_results=True,
renormalize=True,
quant_config=quant_config,
tp_size=get_tensor_model_parallel_world_size(),
prefix=prefix,
)
self.config = config
self.d_model = config.d_model
self.intermediate_size = (self.config.ffn_config.ffn_hidden_size //
self.tp_size)
# Define custom weight loader for dbrx model
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor,
weight_name: str, param_name: str):
tp_rank = get_tensor_model_parallel_rank()
param_data = param.data
shard_size = self.intermediate_size
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
# DBRX uses GLU for each experts.
# GLU has 3 linear layers: w1, v1 and w2.
if weight_name.endswith("w1"):
if param_name.endswith("weight"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
)
param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :]
elif param_name.endswith("weight_scale"):
param_data[:, 0] = loaded_weight
else:
param_data = loaded_weight
if weight_name.endswith("v1"):
if param_name.endswith("weight"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
)
param_data[:, shard_size:2 *
shard_size, :] = loaded_weight[:, shard, :]
elif param_name.endswith("weight_scale"):
param_data[:, 1] = loaded_weight
else:
param_data[:] = loaded_weight
if weight_name.endswith("w2"):
if param_name.endswith("weight"):
loaded_weight = torch.reshape(
loaded_weight,
[-1, self.intermediate_size * self.tp_size, self.d_model],
).transpose(1, 2)
param_data[:] = loaded_weight[:, :, shard]
else:
param_data[:] = loaded_weight
class DbrxMoE(nn.Module):
"""A tensor-parallel MoE implementation for DBRX.
Each expert's weights are sharded across all ranks and a fused MoE
kernel is used for the forward pass, and finally we reduce the outputs
across ranks.
"""
def __init__(
self,
config: DbrxConfig,
quant_config: Optional[QuantizationConfig] = None,
params_dtype: Optional[torch.dtype] = None,
prefix: str = "",
):
super().__init__()
self.d_model = config.d_model
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.router = DbrxRouter(config, self.params_dtype)
self.experts = DbrxExperts(config=config,
quant_config=quant_config,
params_dtype=self.params_dtype,
prefix=f"{prefix}.experts")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(-1, self.d_model)
# router_logits: (num_tokens, n_experts)
router_logits = self.router(hidden_states)
final_hidden_states = self.experts(hidden_states, router_logits)
return final_hidden_states.view(orig_shape)
class DbrxAttention(nn.Module):
def __init__(
self,
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.d_model = config.d_model
self.total_num_heads = config.n_heads
self.head_dim = self.d_model // self.total_num_heads
self.total_num_kv_heads = config.attn_config.kv_n_heads
self.clip_qkv = config.attn_config.clip_qkv
self.rope_theta = config.attn_config.rope_theta
self.max_position = config.max_seq_len
# pylint: disable=invalid-name
self.Wqkv = QKVParallelLinear(
self.d_model,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.out_proj = RowParallelLinear(
self.d_model,
self.d_model,
bias=False,
quant_config=quant_config,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
tp_world_size = get_tensor_model_parallel_world_size()
self.tp_size = tp_world_size
assert self.total_num_heads % tp_world_size == 0
self.num_heads = self.total_num_heads // tp_world_size
if self.total_num_kv_heads >= tp_world_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_world_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_world_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v)
hidden_states, _ = self.out_proj(attn_output)
return hidden_states
class DbrxFusedNormAttention(nn.Module):
def __init__(
self,
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.d_model = config.d_model
self.attn = DbrxAttention(config,
cache_config,
quant_config,
prefix=f"{prefix}.attn")
self.norm_1 = nn.LayerNorm(self.d_model)
self.norm_2 = nn.LayerNorm(self.d_model)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm_1(hidden_states)
x = self.attn(
position_ids=position_ids,
hidden_states=hidden_states,
)
hidden_states = residual + x
residual = hidden_states
hidden_states = self.norm_2(hidden_states)
return hidden_states, residual
class DbrxBlock(nn.Module):
def __init__(
self,
config: DbrxConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.norm_attn_norm = DbrxFusedNormAttention(
config,
cache_config,
quant_config,
prefix=f"{prefix}.norm_attn_norm")
self.ffn = DbrxMoE(config, quant_config, prefix=f"{prefix}.ffn")
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
hidden_states, residual = self.norm_attn_norm(
position_ids=position_ids,
hidden_states=hidden_states,
)
hidden_states = self.ffn(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class DbrxModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.quant_config = quant_config
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.d_model,
)
self.start_layer, self.end_layer, self.blocks = make_layers(
config.n_layers,
lambda prefix: DbrxBlock(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.blocks",
)
self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5)
for module in self.modules():
if hasattr(module, "bias") and isinstance(module.bias,
nn.Parameter):
# Remove the bias term in Linear and LayerNorm.
module.register_parameter("bias", None)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.d_model))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors
hidden_states = intermediate_tensors["hidden_states"]
for block in self.blocks[self.start_layer:self.end_layer]:
hidden_states = block(position_ids, hidden_states)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
hidden_states = self.norm_f(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
expert_params_mapping = [(
"w13" if weight_name in ["w1", "v1"] else "w2",
f"mlp.{weight_name}",
) for weight_name in ["w1", "v1", "w2"]]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache quantization scales
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = (loaded_weight if loaded_weight.dim() == 0 else
loaded_weight[0])
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
if name.endswith(("w1", "w2", "v1")):
name = name + "_weight"
for param_name, weight_name in expert_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, weight_name, name)
break
else:
if is_pp_missing_parameter(name, self):
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class DbrxForCausalLM(nn.Module, SupportsPP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
if config.tie_word_embeddings:
raise ValueError(
"tie_word_embeddings is not supported for Dbrx models.")
self.quant_config = quant_config
self.unpadded_vocab_size = config.vocab_size
self.transformer = DbrxModel(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "transformer"))
self.lm_head = ParallelLMHead(
config.vocab_size,
config.d_model,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size)
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions,
intermediate_tensors, inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)