|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Inference-only BLOOM model compatible with HuggingFace weights.""" |
|
import math |
|
from collections.abc import Iterable |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import BloomConfig |
|
|
|
from vllm.attention import Attention |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import CacheConfig, VllmConfig |
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, |
|
get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.activation import get_act_fn |
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear, |
|
QKVParallelLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors |
|
|
|
from .interfaces import SupportsPP, SupportsQuant, SupportsV0Only |
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers, |
|
maybe_prefix) |
|
|
|
|
|
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor: |
|
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads)) |
|
base = torch.tensor( |
|
2**(-(2**-(math.log2(closest_power_of_2) - 3))), |
|
dtype=torch.float32, |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != total_num_heads: |
|
extra_base = torch.tensor( |
|
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))), |
|
dtype=torch.float32, |
|
) |
|
num_remaining_heads = min(closest_power_of_2, |
|
total_num_heads - closest_power_of_2) |
|
extra_powers = torch.arange(start=1, |
|
end=1 + 2 * num_remaining_heads, |
|
step=2, |
|
dtype=torch.int32) |
|
slopes = torch.cat( |
|
[slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
return slopes |
|
|
|
|
|
class BloomAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: BloomConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.total_num_heads = config.n_head |
|
self.head_dim = self.hidden_size // self.total_num_heads |
|
assert self.head_dim * self.total_num_heads == self.hidden_size |
|
|
|
tp_world_size = get_tensor_model_parallel_world_size() |
|
assert self.total_num_heads % tp_world_size == 0 |
|
self.num_heads = self.total_num_heads // tp_world_size |
|
|
|
self.query_key_value = QKVParallelLinear( |
|
self.hidden_size, |
|
self.head_dim, |
|
self.total_num_heads, |
|
bias=True, |
|
quant_config=quant_config, |
|
) |
|
self.dense = RowParallelLinear( |
|
self.hidden_size, |
|
self.hidden_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
) |
|
|
|
|
|
tp_rank = get_tensor_model_parallel_rank() |
|
head_start = tp_rank * self.num_heads |
|
head_end = (tp_rank + 1) * self.num_heads |
|
alibi_slopes = _get_alibi_slopes(self.total_num_heads) |
|
alibi_slopes = alibi_slopes[head_start:head_end].tolist() |
|
|
|
scaling = self.head_dim**-0.5 |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
scaling, |
|
alibi_slopes=alibi_slopes, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
position_ids: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
del position_ids |
|
qkv, _ = self.query_key_value(hidden_states) |
|
q, k, v = qkv.chunk(chunks=3, dim=-1) |
|
attn_output = self.attn(q, k, v) |
|
output, _ = self.dense(attn_output) |
|
return output |
|
|
|
|
|
class BloomMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: BloomConfig, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.dense_h_to_4h = ColumnParallelLinear( |
|
hidden_size, |
|
4 * hidden_size, |
|
quant_config=quant_config, |
|
) |
|
self.gelu_impl = get_act_fn("gelu") |
|
self.dense_4h_to_h = RowParallelLinear( |
|
4 * hidden_size, |
|
hidden_size, |
|
quant_config=quant_config, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x, _ = self.dense_h_to_4h(x) |
|
x = self.gelu_impl(x) |
|
x, _ = self.dense_4h_to_h(x) |
|
return x |
|
|
|
|
|
class BloomBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: BloomConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.input_layernorm = nn.LayerNorm(hidden_size, |
|
eps=config.layer_norm_epsilon) |
|
self.self_attention = BloomAttention(config, |
|
cache_config, |
|
quant_config, |
|
prefix=f"{prefix}.self_attention") |
|
self.post_attention_layernorm = nn.LayerNorm( |
|
hidden_size, eps=config.layer_norm_epsilon) |
|
self.mlp = BloomMLP(config, quant_config) |
|
self.apply_residual_connection_post_layernorm = ( |
|
config.apply_residual_connection_post_layernorm) |
|
|
|
def forward( |
|
self, |
|
position_ids: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = hidden_states |
|
|
|
|
|
attention_output = self.self_attention( |
|
position_ids=position_ids, |
|
hidden_states=layernorm_output, |
|
) |
|
attention_output = attention_output + residual |
|
layernorm_output = self.post_attention_layernorm(attention_output) |
|
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
residual = layernorm_output |
|
else: |
|
residual = attention_output |
|
|
|
|
|
output = self.mlp(layernorm_output) + residual |
|
return output |
|
|
|
|
|
@support_torch_compile |
|
class BloomModel(nn.Module): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
|
|
self.embed_dim = config.hidden_size |
|
|
|
|
|
self.word_embeddings = VocabParallelEmbedding( |
|
config.vocab_size, |
|
self.embed_dim, |
|
) |
|
self.word_embeddings_layernorm = nn.LayerNorm( |
|
self.embed_dim, eps=config.layer_norm_epsilon) |
|
|
|
|
|
self.start_layer, self.end_layer, self.h = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: BloomBlock( |
|
config, cache_config, quant_config, prefix=prefix), |
|
prefix=f"{prefix}.h") |
|
|
|
|
|
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory(["hidden_states"], |
|
config.hidden_size)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.word_embeddings_layernorm(self.word_embeddings(input_ids)) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
for layer in self.h[self.start_layer:self.end_layer]: |
|
hidden_states = layer(position_ids, hidden_states) |
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({"hidden_states": hidden_states}) |
|
hidden_states = self.ln_f(hidden_states) |
|
return hidden_states |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
params_dict = dict(self.named_parameters(remove_duplicate=False)) |
|
loaded_params: set[str] = set() |
|
for name, loaded_weight in weights: |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
|
|
if "query_key_value" in name: |
|
|
|
|
|
|
|
|
|
output_dim = getattr(param, "output_dim", None) |
|
num_heads = self.config.num_attention_heads |
|
if output_dim is not None: |
|
loaded_weight_shape = loaded_weight.shape |
|
loaded_weight = loaded_weight.view( |
|
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + |
|
loaded_weight_shape[output_dim + 1:]) |
|
loaded_weight = loaded_weight.transpose( |
|
output_dim, output_dim + 1) |
|
loaded_weight = loaded_weight.reshape(loaded_weight_shape) |
|
|
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
|
|
return loaded_params |
|
|
|
|
|
class BloomForCausalLM(nn.Module, SupportsPP, SupportsV0Only, SupportsQuant): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
self.quant_config = quant_config |
|
self.transformer = BloomModel(vllm_config=vllm_config, |
|
prefix=maybe_prefix( |
|
prefix, "transformer")) |
|
if self.config.tie_word_embeddings: |
|
self.lm_head = self.transformer.word_embeddings |
|
else: |
|
self.lm_head = ParallelLMHead(self.config.vocab_size, |
|
self.config.hidden_size) |
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.transformer.make_empty_intermediate_tensors) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.transformer.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.transformer(input_ids, positions, |
|
intermediate_tensors, inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
loader = AutoWeightsLoader(self, skip_prefixes=["lm_head.weight"]) |
|
weights = _add_transformer_prefix(weights) |
|
return loader.load_weights(weights) |
|
|
|
|
|
def _add_transformer_prefix( |
|
weights: Iterable[tuple[str, torch.Tensor]] |
|
) -> Iterable[tuple[str, torch.Tensor]]: |
|
for name, tensor in weights: |
|
if not name.startswith('transformer.'): |
|
name = 'transformer.' + name |
|
yield name, tensor |
|
|