|
|
|
|
|
|
|
from collections.abc import Iterable |
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import BertConfig |
|
|
|
from vllm.attention import Attention, AttentionType |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import CacheConfig, PoolerConfig, VllmConfig |
|
from vllm.distributed import get_tensor_model_parallel_world_size |
|
from vllm.forward_context import get_forward_context |
|
from vllm.model_executor.layers.activation import get_act_fn |
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear, |
|
QKVParallelLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.pooler import (ClassifierPooler, Pooler, |
|
PoolingType) |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
from vllm.model_executor.pooling_metadata import PoolingMetadata |
|
from vllm.sequence import IntermediateTensors, PoolerOutput |
|
from vllm.transformers_utils.config import ( |
|
get_cross_encoder_activation_function) |
|
|
|
from .interfaces import SupportsCrossEncoding, SupportsQuant, SupportsV0Only |
|
from .utils import WeightsMapper, maybe_prefix |
|
|
|
|
|
class BertEmbedding(nn.Module): |
|
|
|
def __init__(self, config: BertConfig): |
|
|
|
super().__init__() |
|
self.size = config.hidden_size |
|
self.word_embeddings = VocabParallelEmbedding(config.vocab_size, |
|
config.hidden_size) |
|
self.position_embeddings = VocabParallelEmbedding( |
|
config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = VocabParallelEmbedding( |
|
config.type_vocab_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, |
|
eps=config.layer_norm_eps) |
|
self.position_ids = nn.Parameter( |
|
torch.empty((1, config.max_position_embeddings)), ) |
|
|
|
self.position_embedding_type = config.position_embedding_type |
|
if self.position_embedding_type != "absolute": |
|
raise ValueError("Only 'absolute' position_embedding_type" + |
|
" is supported") |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
seq_lens: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
input_shape = input_ids.size() |
|
|
|
|
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
if token_type_ids is None: |
|
token_type_ids = torch.zeros(input_shape, |
|
dtype=torch.long, |
|
device=inputs_embeds.device) |
|
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings + position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
return embeddings |
|
|
|
|
|
class BertPooler(nn.Module): |
|
|
|
def __init__(self, config: BertConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[0, :] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
@support_torch_compile |
|
class BertEncoder(nn.Module): |
|
|
|
def __init__(self, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
self.layer = nn.ModuleList([ |
|
BertLayer(config=config, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.layer.{layer_idx}") |
|
for layer_idx in range(config.num_hidden_layers) |
|
]) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
for layer in self.layer: |
|
hidden_states = layer(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertLayer(nn.Module): |
|
|
|
def __init__(self, |
|
config: BertConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = ""): |
|
super().__init__() |
|
|
|
self.attention = BertAttention( |
|
hidden_size=config.hidden_size, |
|
num_attention_heads=config.num_attention_heads, |
|
layer_norm_eps=config.layer_norm_eps, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attention") |
|
|
|
self.intermediate = BertIntermediate( |
|
hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.intermediate") |
|
|
|
self.output = BertOutput(hidden_size=config.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
layer_norm_eps=config.layer_norm_eps, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.output") |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
attn_output = self.attention(hidden_states) |
|
intermediate_output = self.intermediate(attn_output) |
|
output = self.output(intermediate_output, attn_output) |
|
return output |
|
|
|
|
|
class BertAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_attention_heads: int, |
|
layer_norm_eps: float, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
|
|
self.self = BertSelfAttention(hidden_size=hidden_size, |
|
num_attention_heads=num_attention_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.output") |
|
|
|
self.output = BertSelfOutput(hidden_size=hidden_size, |
|
layer_norm_eps=layer_norm_eps, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.output") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
self_output = self.self(hidden_states) |
|
return self.output(self_output, hidden_states) |
|
|
|
|
|
class BertSelfAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_attention_heads: int, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
tp_size = get_tensor_model_parallel_world_size() |
|
|
|
self.total_num_heads = num_attention_heads |
|
assert self.total_num_heads % tp_size == 0 |
|
|
|
self.num_heads = self.total_num_heads // tp_size |
|
self.total_num_kv_heads = self.total_num_heads |
|
self.head_dim = self.hidden_size // self.total_num_heads |
|
assert self.head_dim * self.total_num_heads == self.hidden_size |
|
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) |
|
|
|
self.q_size = self.num_heads * self.head_dim |
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
self.scaling = self.head_dim**-0.5 |
|
self.qkv_proj = QKVParallelLinear( |
|
hidden_size=self.hidden_size, |
|
head_size=self.head_dim, |
|
total_num_heads=self.total_num_heads, |
|
total_num_kv_heads=self.total_num_kv_heads, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.qkv_proj") |
|
|
|
self.attn = Attention(num_heads=self.num_heads, |
|
head_size=self.head_dim, |
|
scale=self.scaling, |
|
num_kv_heads=self.num_kv_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn", |
|
attn_type=AttentionType.ENCODER_ONLY) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
qkv, _ = self.qkv_proj(hidden_states) |
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
output = self.attn(q, k, v) |
|
return output |
|
|
|
|
|
class BertSelfOutput(nn.Module): |
|
|
|
def __init__(self, |
|
hidden_size: int, |
|
layer_norm_eps: float, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = ""): |
|
super().__init__() |
|
self.dense = RowParallelLinear(input_size=hidden_size, |
|
output_size=hidden_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.dense") |
|
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor, |
|
input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states, _ = self.dense(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertIntermediate(nn.Module): |
|
|
|
def __init__(self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = ""): |
|
super().__init__() |
|
self.dense = ColumnParallelLinear(input_size=hidden_size, |
|
output_size=intermediate_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.dense") |
|
self.intermediate_act_fn = get_act_fn(hidden_act) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states, _ = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BertOutput(nn.Module): |
|
|
|
def __init__(self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
layer_norm_eps: float, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = ""): |
|
super().__init__() |
|
|
|
self.dense = RowParallelLinear(input_size=intermediate_size, |
|
output_size=hidden_size, |
|
bias=True, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.dense") |
|
|
|
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor, |
|
input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states, _ = self.dense(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BertModel(nn.Module, SupportsQuant): |
|
packed_modules_mapping = {"qkv_proj": ["query", "key", "value"]} |
|
|
|
def __init__(self, |
|
*, |
|
vllm_config: VllmConfig, |
|
prefix: str = "", |
|
embedding_class: type = BertEmbedding, |
|
add_pooling_layer: bool = False): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
self.embeddings = embedding_class(config) |
|
self.encoder = BertEncoder(vllm_config=vllm_config, |
|
prefix=f"{prefix}.encoder") |
|
self.pooler = BertPooler(config) if add_pooling_layer else None |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
position_ids: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
attn_metadata = get_forward_context().attn_metadata |
|
assert hasattr(attn_metadata, "seq_lens_tensor") |
|
hidden_states = self.embeddings( |
|
input_ids=input_ids, |
|
seq_lens=attn_metadata.seq_lens_tensor, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids) |
|
return self.encoder(hidden_states) |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
stacked_params_mapping = [ |
|
|
|
("qkv_proj", "query", "q"), |
|
("qkv_proj", "key", "k"), |
|
("qkv_proj", "value", "v"), |
|
] |
|
|
|
params_dict = dict(self.named_parameters()) |
|
loaded_params: set[str] = set() |
|
for name, loaded_weight in weights: |
|
if self.pooler is None and "pooler" in name: |
|
continue |
|
for (param_name, weight_name, shard_id) in stacked_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
break |
|
else: |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
return loaded_params |
|
|
|
|
|
class BertEmbeddingModel(nn.Module, SupportsV0Only, SupportsQuant): |
|
"""A model that uses Bert to provide embedding functionalities. |
|
|
|
This class encapsulates the BertModel and provides an interface for |
|
embedding operations and customized pooling functions. |
|
|
|
Attributes: |
|
model: An instance of BertModel used for forward operations. |
|
_pooler: An instance of Pooler used for pooling operations. |
|
""" |
|
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""}) |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
pooler_config = vllm_config.model_config.pooler_config |
|
self.model = self._build_model(vllm_config=vllm_config, |
|
prefix=maybe_prefix(prefix, "model")) |
|
self._pooler = self._build_pooler(pooler_config) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
hidden_states = self.model(input_ids=input_ids, |
|
position_ids=positions, |
|
inputs_embeds=inputs_embeds, |
|
intermediate_tensors=intermediate_tensors) |
|
|
|
|
|
|
|
hidden_states = hidden_states.to(torch.float32) |
|
return hidden_states |
|
|
|
def pooler( |
|
self, |
|
hidden_states: torch.Tensor, |
|
pooling_metadata: PoolingMetadata, |
|
) -> Optional[PoolerOutput]: |
|
return self._pooler(hidden_states, pooling_metadata) |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): |
|
weights = self.hf_to_vllm_mapper.apply(weights) |
|
weights = ((name, data) for name, data in weights |
|
if not name.startswith("lm_head.")) |
|
self.model.load_weights(weights) |
|
|
|
def _build_model(self, |
|
vllm_config: VllmConfig, |
|
prefix: str = "") -> BertModel: |
|
return BertModel(vllm_config=vllm_config, |
|
prefix=prefix, |
|
embedding_class=BertEmbedding) |
|
|
|
def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler: |
|
return Pooler.from_config_with_defaults(pooler_config, |
|
pooling_type=PoolingType.CLS, |
|
normalize=True, |
|
softmax=False) |
|
|
|
|
|
class BertForSequenceClassification(nn.Module, SupportsCrossEncoding, |
|
SupportsQuant): |
|
"""A model that uses Bert to provide embedding functionalities. |
|
|
|
This class encapsulates the BertModel and provides an interface for |
|
embedding operations and customized pooling functions. |
|
|
|
Attributes: |
|
model: An instance of BertModel used for forward operations. |
|
_pooler: An instance of Pooler used for pooling operations. |
|
""" |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
|
|
self.default_activation_function = \ |
|
get_cross_encoder_activation_function(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.bert = BertModel(vllm_config=vllm_config, |
|
prefix=maybe_prefix(prefix, "bert"), |
|
embedding_class=BertEmbedding, |
|
add_pooling_layer=True) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
self._pooler = ClassifierPooler(vllm_config.model_config, |
|
self.classifier, self.bert.pooler) |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): |
|
|
|
self_weights = [] |
|
|
|
def weight_filter(): |
|
for name, weight in weights: |
|
if name.startswith("bert."): |
|
yield (name[len("bert."):], weight) |
|
else: |
|
self_weights.append((name, weight)) |
|
|
|
self.bert.load_weights(weight_filter()) |
|
|
|
params_dict = dict(self.named_parameters()) |
|
|
|
for name, loaded_weight in self_weights: |
|
if name.startswith("classifier"): |
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
|
|
def pooler( |
|
self, |
|
hidden_states: torch.Tensor, |
|
pooling_metadata: PoolingMetadata, |
|
) -> Optional[PoolerOutput]: |
|
return self._pooler(hidden_states, pooling_metadata) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor], |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
return self.bert(input_ids=input_ids, |
|
position_ids=positions, |
|
inputs_embeds=inputs_embeds, |
|
intermediate_tensors=intermediate_tensors, |
|
token_type_ids=token_type_ids) |
|
|