|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Inference-only BaiChuan model compatible with HuggingFace weights.""" |
|
import math |
|
from collections.abc import Iterable |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
from transformers import PretrainedConfig |
|
|
|
from vllm.attention import Attention |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import CacheConfig, VllmConfig |
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, |
|
get_tensor_model_parallel_world_size) |
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
from vllm.model_executor.layers.layernorm import RMSNorm |
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, |
|
QKVParallelLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import ( |
|
default_weight_loader, row_parallel_weight_loader) |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.sequence import IntermediateTensors |
|
|
|
from .interfaces import SupportsLoRA, SupportsPP, SupportsQuant |
|
from .utils import (AutoWeightsLoader, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers) |
|
|
|
|
|
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor: |
|
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads)) |
|
base = torch.tensor( |
|
2**(-(2**-(math.log2(closest_power_of_2) - 3))), |
|
dtype=torch.float32, |
|
) |
|
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32) |
|
slopes = torch.pow(base, powers) |
|
|
|
if closest_power_of_2 != total_num_heads: |
|
extra_base = torch.tensor( |
|
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))), |
|
dtype=torch.float32, |
|
) |
|
num_remaining_heads = min(closest_power_of_2, |
|
total_num_heads - closest_power_of_2) |
|
extra_powers = torch.arange(start=1, |
|
end=1 + 2 * num_remaining_heads, |
|
step=2, |
|
dtype=torch.int32) |
|
slopes = torch.cat( |
|
[slopes, torch.pow(extra_base, extra_powers)], dim=0) |
|
return slopes |
|
|
|
|
|
class BaiChuanMLP(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
): |
|
super().__init__() |
|
self.gate_up_proj = MergedColumnParallelLinear( |
|
hidden_size, [intermediate_size] * 2, |
|
bias=False, |
|
quant_config=quant_config) |
|
self.down_proj = RowParallelLinear(intermediate_size, |
|
hidden_size, |
|
bias=False, |
|
quant_config=quant_config) |
|
if hidden_act != "silu": |
|
raise ValueError(f"Unsupported activation: {hidden_act}. " |
|
"Only silu is supported for now.") |
|
self.act_fn = SiluAndMul() |
|
|
|
def forward(self, x): |
|
gate_up, _ = self.gate_up_proj(x) |
|
x = self.act_fn(gate_up) |
|
x, _ = self.down_proj(x) |
|
return x |
|
|
|
|
|
class BaiChuanAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
position_embedding: str, |
|
rope_theta: float = 10000, |
|
max_position_embeddings: int = 8192, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size( |
|
) |
|
self.total_num_heads = num_heads |
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0 |
|
self.num_heads = (self.total_num_heads // |
|
tensor_model_parallel_world_size) |
|
self.head_dim = hidden_size // self.total_num_heads |
|
self.postion_embedding = position_embedding |
|
self.rope_theta = rope_theta |
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
|
|
self.W_pack = QKVParallelLinear( |
|
hidden_size, |
|
self.head_dim, |
|
self.total_num_heads, |
|
self.total_num_heads, |
|
bias=False, |
|
quant_config=quant_config, |
|
) |
|
self.o_proj = RowParallelLinear( |
|
self.total_num_heads * self.head_dim, |
|
hidden_size, |
|
bias=False, |
|
quant_config=quant_config, |
|
) |
|
|
|
if self.postion_embedding == "ALIBI": |
|
tp_rank = get_tensor_model_parallel_rank() |
|
head_start = tp_rank * self.num_heads |
|
head_end = (tp_rank + 1) * self.num_heads |
|
alibi_slopes = _get_alibi_slopes(self.total_num_heads) |
|
alibi_slopes = alibi_slopes[head_start:head_end].tolist() |
|
|
|
scaling = self.head_dim**-0.5 |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
scaling, |
|
alibi_slopes=alibi_slopes, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
else: |
|
self.rotary_emb = get_rope( |
|
self.head_dim, |
|
rotary_dim=self.head_dim, |
|
max_position=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
self.scaling, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
qkv, _ = self.W_pack(hidden_states) |
|
q, k, v = qkv.chunk(chunks=3, dim=-1) |
|
if self.postion_embedding != "ALIBI": |
|
q, k = self.rotary_emb(positions, q, k) |
|
attn_output = self.attn(q, k, v) |
|
output, _ = self.o_proj(attn_output) |
|
return output |
|
|
|
|
|
class BaiChuanDecoderLayer(nn.Module): |
|
|
|
def __init__(self, |
|
config: PretrainedConfig, |
|
position_embedding: str, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = ""): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
rope_theta = getattr(config, "rope_theta", 10000) |
|
max_position_embeddings = getattr(config, "max_position_embeddings", |
|
8192) |
|
self.self_attn = BaiChuanAttention( |
|
hidden_size=self.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
position_embedding=position_embedding, |
|
rope_theta=rope_theta, |
|
max_position_embeddings=max_position_embeddings, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.self_attn", |
|
) |
|
self.mlp = BaiChuanMLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
quant_config=quant_config, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
residual: Optional[torch.Tensor], |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if residual is None: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
else: |
|
hidden_states, residual = self.input_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.self_attn( |
|
positions=positions, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
|
|
hidden_states, residual = self.post_attention_layernorm( |
|
hidden_states, residual) |
|
hidden_states = self.mlp(hidden_states) |
|
return hidden_states, residual |
|
|
|
|
|
@support_torch_compile |
|
class BaiChuanModel(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
vllm_config: VllmConfig, |
|
prefix: str = "", |
|
position_embedding: str = "ROPE", |
|
) -> None: |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
|
|
self.config = config |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = VocabParallelEmbedding( |
|
config.vocab_size, |
|
config.hidden_size, |
|
) |
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: BaiChuanDecoderLayer(config, |
|
position_embedding, |
|
cache_config, |
|
quant_config, |
|
prefix=prefix), |
|
prefix=f"{prefix}.layers", |
|
) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory( |
|
["hidden_states", "residual"], config.hidden_size)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.embed_tokens(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
residual = None |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
residual = intermediate_tensors["residual"] |
|
for layer in self.layers[self.start_layer:self.end_layer]: |
|
hidden_states, residual = layer( |
|
positions, |
|
hidden_states, |
|
residual, |
|
) |
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({ |
|
"hidden_states": hidden_states, |
|
"residual": residual, |
|
}) |
|
hidden_states, _ = self.norm(hidden_states, residual) |
|
return hidden_states |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
stacked_params_mapping = [ |
|
|
|
("gate_up_proj", "gate_proj", 0), |
|
("gate_up_proj", "up_proj", 1), |
|
] |
|
params_dict = dict(self.named_parameters()) |
|
loaded_params: set[str] = set() |
|
for name, loaded_weight in weights: |
|
if "rotary_emb.inv_freq" in name: |
|
continue |
|
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
break |
|
else: |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
return loaded_params |
|
|
|
|
|
class BaiChuanBaseForCausalLM(nn.Module, SupportsLoRA, SupportsPP, |
|
SupportsQuant): |
|
packed_modules_mapping = { |
|
"W_pack": ["W_pack"], |
|
"gate_up_proj": [ |
|
"gate_proj", |
|
"up_proj", |
|
], |
|
} |
|
|
|
def __init__( |
|
self, |
|
*, |
|
vllm_config: VllmConfig, |
|
prefix: str = "", |
|
position_embedding: str = "ROPE", |
|
): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
lora_config = vllm_config.lora_config |
|
self.config = config |
|
self.lora_config = lora_config |
|
self.tp_size = get_tensor_model_parallel_world_size() |
|
self.quant_config = quant_config |
|
self.model = BaiChuanModel(vllm_config=vllm_config, |
|
prefix=prefix, |
|
position_embedding=position_embedding) |
|
self.lm_head = ParallelLMHead(config.vocab_size, |
|
config.hidden_size, |
|
quant_config=quant_config) |
|
self.lm_head.weight.weight_loader = self.lm_head_weight_loader |
|
if self.config.tie_word_embeddings: |
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
self.logits_processor = LogitsProcessor(config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.model.make_empty_intermediate_tensors) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.model.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.model(input_ids, positions, intermediate_tensors, |
|
inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
loader = AutoWeightsLoader(self) |
|
return loader.load_weights(weights) |
|
|
|
def lm_head_weight_loader(self, param: nn.Parameter, |
|
loaded_weight: torch.Tensor): |
|
|
|
|
|
|
|
|
|
|
|
|
|
is_baichuan2 = self.config.vocab_size == 125696 |
|
if is_baichuan2: |
|
loaded_weight = torch.nn.functional.normalize(loaded_weight) |
|
if self.tp_size > 1: |
|
row_parallel_weight_loader(param, loaded_weight) |
|
else: |
|
default_weight_loader(param, loaded_weight) |
|
|
|
|
|
class BaichuanForCausalLM(BaiChuanBaseForCausalLM): |
|
"""Baichuan 13B and Baichuan2 7B/13B. |
|
NOTE: the class name has a lower case 'c'. |
|
""" |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
config = vllm_config.model_config.hf_config |
|
if config.hidden_size == 4096: |
|
super().__init__(vllm_config=vllm_config, |
|
prefix=prefix, |
|
position_embedding="ROPE") |
|
else: |
|
super().__init__(vllm_config=vllm_config, |
|
prefix=prefix, |
|
position_embedding="ALIBI") |
|
|
|
|
|
class BaiChuanForCausalLM(BaiChuanBaseForCausalLM): |
|
"""Baichuan 7B. |
|
NOTE: the class name has an upper case 'C'. |
|
""" |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__(vllm_config=vllm_config, |
|
prefix=prefix, |
|
position_embedding="ROPE") |
|
|