|
|
|
|
|
"""Inference-only Snowflake Arctic model.""" |
|
from collections.abc import Iterable |
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from vllm.attention import Attention |
|
from vllm.compilation.decorators import support_torch_compile |
|
from vllm.config import CacheConfig, VllmConfig |
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank, |
|
get_tensor_model_parallel_world_size, |
|
tensor_model_parallel_all_reduce) |
|
from vllm.logger import init_logger |
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
from vllm.model_executor.layers.fused_moe import fused_experts, fused_topk |
|
from vllm.model_executor.layers.layernorm import RMSNorm |
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, |
|
QKVParallelLinear, |
|
ReplicatedLinear, |
|
RowParallelLinear) |
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
from vllm.model_executor.layers.quantization.deepspeedfp import ( |
|
DeepSpeedFPConfig, DeepSpeedFPParameter) |
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
ParallelLMHead, VocabParallelEmbedding) |
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
from vllm.model_executor.utils import set_weight_attrs |
|
from vllm.platforms import current_platform |
|
from vllm.sequence import IntermediateTensors |
|
from vllm.transformers_utils.configs.arctic import ArcticConfig |
|
|
|
from .interfaces import SupportsPP, SupportsQuant |
|
from .utils import (extract_layer_index, is_pp_missing_parameter, |
|
make_empty_intermediate_tensors_factory, make_layers, |
|
maybe_prefix) |
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
class ArcticMLP(nn.Module): |
|
|
|
def __init__(self, |
|
config: ArcticConfig, |
|
expert_id: int = -1, |
|
is_residual_mlp: bool = False, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
reduce_results: bool = True, |
|
prefix: str = ""): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.expert_id = expert_id |
|
|
|
self.ffn_dim = config.intermediate_size if not is_residual_mlp \ |
|
else self.hidden_size |
|
|
|
self.w13 = MergedColumnParallelLinear(self.hidden_size, |
|
[self.ffn_dim] * 2, |
|
bias=False, |
|
quant_config=quant_config) |
|
self.w2 = RowParallelLinear(self.ffn_dim, |
|
self.hidden_size, |
|
bias=False, |
|
reduce_results=reduce_results, |
|
quant_config=quant_config) |
|
if config.hidden_act != "silu": |
|
raise ValueError(f"Unsupported activation: {config.hidden_act}. " |
|
"Only silu is supported for now.") |
|
self.act_fn = SiluAndMul() |
|
|
|
def forward(self, hidden_states): |
|
gate_up, _ = self.w13(hidden_states) |
|
hidden_states = self.act_fn(gate_up) |
|
hidden_states, _ = self.w2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ArcticMoE(nn.Module): |
|
""" |
|
Model-parallel implementation of Arctic MoE Layer. |
|
""" |
|
|
|
def __init__(self, |
|
config: ArcticConfig, |
|
tp_size: Optional[int] = None, |
|
params_dtype: Optional[torch.dtype] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
reduce_results: bool = True, |
|
prefix: str = ""): |
|
super().__init__() |
|
|
|
layer_id = extract_layer_index(prefix) |
|
self.tp_size = tp_size or get_tensor_model_parallel_world_size() |
|
self.hidden_size = config.hidden_size |
|
self.num_experts = config.num_local_experts |
|
self.layer_id = layer_id |
|
self.top_k = config.num_experts_per_tok |
|
self.intermediate_size = config.intermediate_size // self.tp_size |
|
|
|
self.is_moe_layer = (layer_id + 1) % config.moe_layer_frequency == 0 |
|
self.is_quant = isinstance(quant_config, DeepSpeedFPConfig) |
|
self.reduce_results = reduce_results |
|
|
|
if params_dtype is None: |
|
params_dtype = torch.get_default_dtype() |
|
self.params_dtype = params_dtype |
|
|
|
if not self.is_moe_layer: |
|
self.mlp = ArcticMLP(config, |
|
quant_config=quant_config, |
|
reduce_results=reduce_results, |
|
prefix=f"{prefix}.mlp") |
|
else: |
|
self.gate = ReplicatedLinear(self.hidden_size, |
|
self.num_experts, |
|
bias=False, |
|
params_dtype=self.params_dtype, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.gate") |
|
if self.is_quant: |
|
self.ws = DeepSpeedFPParameter( |
|
torch.Size((self.num_experts, 2 * self.intermediate_size, |
|
self.hidden_size)), |
|
params_dtype=params_dtype, |
|
quant_config=quant_config, |
|
) |
|
self.w2s = DeepSpeedFPParameter( |
|
torch.Size((self.num_experts, self.hidden_size, |
|
self.intermediate_size)), |
|
params_dtype=params_dtype, |
|
quant_config=quant_config, |
|
) |
|
else: |
|
self.ws = nn.Parameter( |
|
torch.empty(self.num_experts, |
|
2 * self.intermediate_size, |
|
self.hidden_size, |
|
device=current_platform.device_type, |
|
dtype=self.params_dtype)) |
|
self.w2s = nn.Parameter( |
|
torch.empty(self.num_experts, |
|
self.hidden_size, |
|
self.intermediate_size, |
|
device=current_platform.device_type, |
|
dtype=self.params_dtype)) |
|
set_weight_attrs(self.ws, { |
|
"weight_loader": self.weight_loader, |
|
}) |
|
set_weight_attrs(self.w2s, { |
|
"weight_loader": self.weight_loader, |
|
}) |
|
|
|
def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor, |
|
weight_name: str, expert_id: int): |
|
tp_rank = get_tensor_model_parallel_rank() |
|
param_data = param.ds_dequantize() if self.is_quant else param.data |
|
shard_size = self.intermediate_size |
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size) |
|
if weight_name.endswith("w1.weight"): |
|
param_data[expert_id, 0:shard_size, :] = loaded_weight[shard, :] |
|
if weight_name.endswith("w3.weight"): |
|
param_data[expert_id, |
|
shard_size:2 * shard_size, :] = loaded_weight[shard, :] |
|
if weight_name.endswith("w2.weight"): |
|
param_data[expert_id, :, :] = loaded_weight[:, shard] |
|
if self.is_quant: |
|
param.ds_quantize_(param_data) |
|
|
|
def local_moe_fused(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
num_tokens, hidden_size = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, self.hidden_size) |
|
|
|
router_logits, _ = self.gate(hidden_states) |
|
do_normalize = self.top_k > 1 |
|
topk_weights, topk_ids, token_expert_indices = fused_topk( |
|
hidden_states, router_logits, self.top_k, renormalize=do_normalize) |
|
|
|
if self.is_quant: |
|
if 2 * num_tokens <= self.num_experts: |
|
|
|
ws_dequantized = self.ws.ds_selective_dequantize( |
|
topk_ids.flatten()) |
|
w2s_dequantized = self.w2s.ds_selective_dequantize( |
|
topk_ids.flatten()) |
|
|
|
topk_ids = torch.arange( |
|
0, |
|
topk_ids.numel(), |
|
device=topk_ids.device, |
|
).reshape(topk_ids.shape) |
|
else: |
|
ws_dequantized = self.ws.ds_dequantize() |
|
w2s_dequantized = self.w2s.ds_dequantize() |
|
|
|
final_hidden_states = fused_experts( |
|
hidden_states, |
|
ws_dequantized if self.is_quant else self.ws, |
|
w2s_dequantized if self.is_quant else self.w2s, |
|
topk_weights, |
|
topk_ids, |
|
inplace=True) |
|
if self.reduce_results and self.tp_size > 1: |
|
final_hidden_states = tensor_model_parallel_all_reduce( |
|
final_hidden_states) |
|
return final_hidden_states.view(num_tokens, hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
if self.is_moe_layer: |
|
final_hidden_states = self.local_moe_fused(hidden_states) |
|
else: |
|
final_hidden_states = self.mlp(hidden_states) |
|
return final_hidden_states |
|
|
|
|
|
class ArcticAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: ArcticConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
|
|
tp_size = get_tensor_model_parallel_world_size() |
|
self.total_num_heads = config.num_attention_heads |
|
assert self.total_num_heads % tp_size == 0 |
|
self.num_heads = self.total_num_heads // tp_size |
|
self.total_num_kv_heads = config.num_key_value_heads |
|
if self.total_num_kv_heads >= tp_size: |
|
assert self.total_num_kv_heads % tp_size == 0 |
|
else: |
|
assert tp_size % self.total_num_kv_heads == 0 |
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) |
|
self.head_dim = self.hidden_size // self.total_num_heads |
|
self.q_size = self.num_heads * self.head_dim |
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
|
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
self.qkv_proj = QKVParallelLinear(self.hidden_size, |
|
self.head_dim, |
|
self.total_num_heads, |
|
self.total_num_kv_heads, |
|
bias=False, |
|
quant_config=quant_config) |
|
self.o_proj = RowParallelLinear( |
|
self.total_num_heads * self.head_dim, |
|
self.hidden_size, |
|
bias=False, |
|
reduce_results=True, |
|
quant_config=quant_config, |
|
) |
|
|
|
self.rotary_emb = get_rope( |
|
self.head_dim, |
|
rotary_dim=self.head_dim, |
|
max_position=self.max_position_embeddings, |
|
base=int(self.rope_theta), |
|
is_neox_style=True, |
|
) |
|
|
|
self.attn = Attention(self.num_heads, |
|
self.head_dim, |
|
self.scaling, |
|
num_kv_heads=self.num_kv_heads, |
|
cache_config=cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.attn") |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
qkv, _ = self.qkv_proj(hidden_states) |
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
q, k = self.rotary_emb(positions, q, k) |
|
attn_output = self.attn(q, k, v) |
|
output, _ = self.o_proj(attn_output) |
|
return output |
|
|
|
|
|
class ArcticDecoderLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
config: ArcticConfig, |
|
cache_config: Optional[CacheConfig] = None, |
|
quant_config: Optional[QuantizationConfig] = None, |
|
prefix: str = "", |
|
) -> None: |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
layer_idx = extract_layer_index(prefix) |
|
is_moe_layer = (layer_idx + 1) % config.moe_layer_frequency == 0 |
|
self.use_residual = config.use_residual and is_moe_layer |
|
self.self_attn = ArcticAttention(config, |
|
cache_config, |
|
quant_config=quant_config, |
|
prefix=f"{prefix}.self_attn") |
|
self.block_sparse_moe = ArcticMoE( |
|
config, |
|
quant_config=quant_config, |
|
reduce_results=(not self.use_residual), |
|
prefix=f"{prefix}.block_sparse_moe", |
|
) |
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
|
|
if self.use_residual: |
|
self.residual_layernorm = RMSNorm(config.hidden_size, |
|
eps=config.rms_norm_eps) |
|
self.residual_mlp = ArcticMLP(config, |
|
is_residual_mlp=True, |
|
reduce_results=False, |
|
prefix=f"{prefix}.residual_mlp") |
|
|
|
def forward( |
|
self, |
|
positions: torch.Tensor, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
residual_input = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
hidden_states = self.self_attn( |
|
positions=positions, |
|
hidden_states=hidden_states, |
|
) |
|
hidden_states = residual_input + hidden_states |
|
|
|
residual_attn = hidden_states |
|
if self.use_residual: |
|
hidden_states = self.residual_layernorm(hidden_states) |
|
hidden_states = self.residual_mlp(hidden_states) |
|
residual_mlp = hidden_states |
|
hidden_states = self.post_attention_layernorm(residual_input) |
|
hidden_states = self.block_sparse_moe(hidden_states) |
|
hidden_states = residual_mlp + hidden_states |
|
hidden_states = tensor_model_parallel_all_reduce(hidden_states) |
|
hidden_states = residual_attn + hidden_states |
|
else: |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.block_sparse_moe(hidden_states) |
|
hidden_states = residual_attn + hidden_states |
|
return hidden_states |
|
|
|
|
|
@support_torch_compile |
|
class ArcticModel(nn.Module): |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
|
|
config = vllm_config.model_config.hf_config |
|
cache_config = vllm_config.cache_config |
|
quant_config = vllm_config.quant_config |
|
|
|
self.vocab_size = config.vocab_size |
|
self.embed_tokens = VocabParallelEmbedding( |
|
self.vocab_size, |
|
config.hidden_size, |
|
org_num_embeddings=self.vocab_size) |
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
config.num_hidden_layers, |
|
lambda prefix: ArcticDecoderLayer( |
|
config, cache_config, quant_config, prefix=prefix), |
|
prefix=f"{prefix}.layers") |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.make_empty_intermediate_tensors = ( |
|
make_empty_intermediate_tensors_factory(["hidden_states"], |
|
config.hidden_size)) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.embed_tokens(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors], |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
if get_pp_group().is_first_rank: |
|
if inputs_embeds is not None: |
|
hidden_states = inputs_embeds |
|
else: |
|
hidden_states = self.get_input_embeddings(input_ids) |
|
else: |
|
assert intermediate_tensors is not None |
|
hidden_states = intermediate_tensors["hidden_states"] |
|
for layer in self.layers[self.start_layer:self.end_layer]: |
|
hidden_states = layer(positions, hidden_states) |
|
if not get_pp_group().is_last_rank: |
|
return IntermediateTensors({"hidden_states": hidden_states}) |
|
hidden_states = self.norm(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class ArcticForCausalLM(nn.Module, SupportsPP, SupportsQuant): |
|
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]} |
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
super().__init__() |
|
config = vllm_config.model_config.hf_config |
|
quant_config = vllm_config.quant_config |
|
self.config = config |
|
self.model = ArcticModel(vllm_config=vllm_config, |
|
prefix=maybe_prefix(prefix, "model")) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = ParallelLMHead( |
|
self.vocab_size, |
|
config.hidden_size, |
|
quant_config=quant_config, |
|
) |
|
if self.config.tie_word_embeddings: |
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
self.num_experts = config.num_local_experts |
|
self.num_experts_per_tok = config.num_experts_per_tok |
|
self.unpadded_vocab_size = config.vocab_size |
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, |
|
config.vocab_size) |
|
self.make_empty_intermediate_tensors = ( |
|
self.model.make_empty_intermediate_tensors) |
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
return self.model.get_input_embeddings(input_ids) |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
positions: torch.Tensor, |
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
hidden_states = self.model(input_ids, positions, intermediate_tensors, |
|
inputs_embeds) |
|
return hidden_states |
|
|
|
def compute_logits( |
|
self, |
|
hidden_states: torch.Tensor, |
|
sampling_metadata: SamplingMetadata, |
|
) -> Optional[torch.Tensor]: |
|
logits = self.logits_processor(self.lm_head, hidden_states, |
|
sampling_metadata) |
|
return logits |
|
|
|
def load_weights(self, weights: Iterable[tuple[str, |
|
torch.Tensor]]) -> set[str]: |
|
stacked_params_mapping = [ |
|
|
|
("qkv_proj", "q_proj", "q"), |
|
("qkv_proj", "k_proj", "k"), |
|
("qkv_proj", "v_proj", "v"), |
|
] |
|
|
|
mlp_params_mapping: list[tuple[str, str, int]] = [] |
|
expert_params_mapping: list[tuple[str, str, int]] = [] |
|
num_layers = self.config.num_hidden_layers |
|
|
|
for layer in range(num_layers): |
|
mlp_params_mapping.append( |
|
(f"layers.{layer}.residual_mlp.w13.weight", |
|
f"layers.{layer}.residual_mlp.w1.weight", 0)) |
|
mlp_params_mapping.append( |
|
(f"layers.{layer}.residual_mlp.w13.weight", |
|
f"layers.{layer}.residual_mlp.w3.weight", 1)) |
|
if layer % 2 == 0: |
|
|
|
mlp_params_mapping.append( |
|
(f"layers.{layer}.block_sparse_moe.mlp.w13.weight", |
|
f"layers.{layer}.block_sparse_moe.mlp.w1.weight", 0)) |
|
mlp_params_mapping.append( |
|
(f"layers.{layer}.block_sparse_moe.mlp.w13.weight", |
|
f"layers.{layer}.block_sparse_moe.mlp.w3.weight", 1)) |
|
else: |
|
|
|
for expert_id in range(self.config.num_local_experts): |
|
expert_params_mapping.append( |
|
("ws", f"experts.{expert_id}.w1.weight", expert_id)) |
|
expert_params_mapping.append( |
|
("w2s", f"experts.{expert_id}.w2.weight", expert_id)) |
|
expert_params_mapping.append( |
|
("ws", f"experts.{expert_id}.w3.weight", expert_id)) |
|
|
|
params_dict = dict(self.named_parameters()) |
|
loaded_params: set[str] = set() |
|
|
|
logger.info( |
|
"It will take ~10 minutes loading from the 16-bit weights. " |
|
"Alternatively, use the prequantized 8-bit weights of arctic " |
|
"and set load-format to `sharded_state` will accelerate loading.") |
|
for name, loaded_weight in weights: |
|
for (param_name, weight_name, shard_id) in stacked_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
|
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
break |
|
else: |
|
for param_name, weight_name, shard_id in mlp_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, loaded_weight, shard_id) |
|
break |
|
else: |
|
for param_name, weight_name, shard_id \ |
|
in expert_params_mapping: |
|
if weight_name not in name: |
|
continue |
|
name = name.replace(weight_name, param_name) |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
weight_loader = param.weight_loader |
|
weight_loader(param, |
|
loaded_weight, |
|
weight_name, |
|
expert_id=shard_id) |
|
break |
|
else: |
|
if name.endswith(".bias") and name not in params_dict: |
|
continue |
|
if is_pp_missing_parameter(name, self): |
|
continue |
|
param = params_dict[name] |
|
|
|
weight_loader = getattr(param, "weight_loader", |
|
default_weight_loader) |
|
weight_loader(param, loaded_weight) |
|
loaded_params.add(name) |
|
return loaded_params |
|
|