File size: 24,511 Bytes
4679932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only GraniteMoeHybrid model."""
# Added by the IBM Team, 2025
from collections.abc import Iterable
from typing import Optional
import torch
from torch import nn
from transformers import GraniteMoeHybridConfig
from vllm.attention.layer import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba2_metadata import (
Mamba2Metadata, prepare_mamba2_metadata)
from vllm.model_executor.layers.mamba.mamba_mixer2 import (
MambaMixer2, extra_groups_for_head_shards)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType
from .granitemoe import GraniteMoeMoE
from .granitemoeshared import GraniteMoeSharedMLP
from .interfaces import (HasInnerState, IsHybrid, SupportsLoRA, SupportsPP,
SupportsQuant, SupportsV0Only)
from .utils import (AutoWeightsLoader, make_empty_intermediate_tensors_factory,
make_layers, maybe_prefix)
class GraniteMoeHybridMambaDecoderLayer(nn.Module):
def __init__(self,
config: GraniteMoeHybridConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
self.mamba = MambaMixer2(hidden_size= config.hidden_size,
ssm_state_size = config.mamba_d_state,
conv_kernel_size = config.mamba_d_conv,
intermediate_size = config.mamba_expand *\
config.hidden_size,
use_conv_bias = config.mamba_conv_bias,
use_bias = config.mamba_proj_bias,
n_groups=config.mamba_n_groups,
num_heads=config.mamba_n_heads,
head_dim=config.mamba_d_head,
rms_norm_eps=config.rms_norm_eps,
activation=config.hidden_act,
quant_config=quant_config)
self.block_sparse_moe = GraniteMoeMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.block_sparse_moe")
self.shared_mlp = None if \
getattr(config, 'shared_intermediate_size', 0) == 0 \
else GraniteMoeSharedMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.shared_mlp"
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(hidden_states, mamba_cache_params,
mamba2_metadata)
hidden_states = residual + hidden_states * self.residual_multiplier
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if self.shared_mlp is None:
hidden_states = self.block_sparse_moe(hidden_states)
else:
# create a copy since block_sparse_moe modifies in-place
moe_hidden_states = hidden_states.clone()
moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
del moe_hidden_states
hidden_states = residual + hidden_states * self.residual_multiplier
return hidden_states, residual
class GraniteMoeHybridAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: GraniteMoeHybridConfig,
layer_idx: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
self.self_attn = GraniteMoeHybridAttention(
config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn")
self.block_sparse_moe = GraniteMoeMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.block_sparse_moe")
self.shared_mlp = None if \
getattr(config, 'shared_intermediate_size', 0) == 0 \
else GraniteMoeSharedMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.shared_mlp"
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
mamba_cache_params: MambaCacheParams,
mamba2_metadata: Mamba2Metadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = residual + hidden_states * self.residual_multiplier
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if self.shared_mlp is None:
hidden_states = self.block_sparse_moe(hidden_states)
else:
# create a copy since block_sparse_moe modifies in-place
moe_hidden_states = hidden_states.clone()
moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
del moe_hidden_states
hidden_states = residual + hidden_states * self.residual_multiplier
return hidden_states, residual
class GraniteMoeHybridAttention(nn.Module):
def __init__(
self,
config: GraniteMoeHybridConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.causal = True
self.hidden_size = config.hidden_size
self.attention_bias = config.attention_bias
self.attention_multiplier = config.attention_multiplier
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.q_proj = ReplicatedLinear(self.hidden_size,
self.num_heads * self.head_dim,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.q_proj")
self.k_proj = ReplicatedLinear(self.hidden_size,
self.num_key_value_heads *
self.head_dim,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.k_proj")
self.v_proj = ReplicatedLinear(self.hidden_size,
self.num_key_value_heads *
self.head_dim,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.v_proj")
self.o_proj = ReplicatedLinear(self.hidden_size,
self.hidden_size,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
if config.position_embedding_type == "rope":
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=config.max_position_embeddings,
base=int(config.rope_theta),
rope_scaling=config.rope_scaling \
if hasattr(config, "rope_scaling") \
and config.rope_scaling is not None else None,
is_neox_style=True,
)
else:
self.rotary_emb = None
self.attn = Attention(self.num_heads,
self.head_dim,
self.attention_multiplier,
num_kv_heads=self.num_key_value_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
query = self.q_proj(hidden_states)[0]
key = self.k_proj(hidden_states)[0]
value = self.v_proj(hidden_states)[0]
if self.rotary_emb is not None:
query, key = self.rotary_emb(positions, query, key)
hidden_states = self.attn(query, key, value)
del query, key, value
hidden_states = self.o_proj(hidden_states)[0]
return hidden_states
ALL_DECODER_LAYER_TYPES = {
"attention": GraniteMoeHybridAttentionDecoderLayer,
"mamba": GraniteMoeHybridMambaDecoderLayer,
}
class GraniteMoeHybridModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
lora_vocab = ((lora_config.lora_extra_vocab_size *
(lora_config.max_loras or 1)) if lora_config else 0)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.embedding_multiplier = config.embedding_multiplier
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = ALL_DECODER_LAYER_TYPES[
config.layer_types[layer_idx]]
return layer_class(
config,
layer_idx,
cache_config,
quant_config=quant_config,
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
mamba_cache_params: MambaCacheParams,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
attn_metadata = get_forward_context().attn_metadata
mamba2_metadata = prepare_mamba2_metadata(
chunk_size=self.config.mamba_chunk_size,
attn_metadata=attn_metadata,
)
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states = hidden_states * self.embedding_multiplier
residual = None
else:
if intermediate_tensors is None:
raise RuntimeError('Intermediate tensors may not be None!')
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
num_attn = 0
for i in range(len(self.layers)):
layer = self.layers[i]
if isinstance(layer, GraniteMoeHybridAttentionDecoderLayer):
num_attn += 1
layer_mamba_cache_params = None
if isinstance(layer, GraniteMoeHybridMambaDecoderLayer):
layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
i - num_attn)
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
mamba_cache_params=layer_mamba_cache_params,
mamba2_metadata=mamba2_metadata)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states = self.norm(hidden_states)
return hidden_states
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
def _load(n, p):
param = params_dict[n]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, p)
loaded_params.add(n)
def _load_expert(n, p, name, shard_id, expert_id):
param = params_dict[n]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param,
p,
name,
shard_id=shard_id,
expert_id=expert_id)
loaded_params.add(n)
for n, p in weights:
if "A_log" in n:
n = n.replace("A_log", "A")
# Logic analogous to: https://github.com/vllm-project/vllm/blob/f49e5aff11c986ed4d45202b1716c5d74786efa9/vllm/model_executor/models/granitemoeshared.py#L215
# Mapping different experts' layout:
# from HF (input_linear, output_linear, router)
# to vLLM (experts_w13({e}.w1, {e}.w2), experts_w3({e}.w3), gate)
if n.endswith('.block_sparse_moe.input_linear.weight'):
for e in range(p.size(0)):
w1_name = n.replace(
'.block_sparse_moe.input_linear.weight',
f".block_sparse_moe.experts.{e}.w1.weight")
w3_name = n.replace(
'.block_sparse_moe.input_linear.weight',
f".block_sparse_moe.experts.{e}.w3.weight")
w1_param, w3_param = p[e].chunk(2, dim=0)
_load_expert(n.replace('.input_linear.', '.experts.w13_'),
w1_param,
w1_name,
shard_id='w1',
expert_id=e)
_load_expert(n.replace('.input_linear.', '.experts.w13_'),
w3_param,
w3_name,
shard_id='w3',
expert_id=e)
elif n.endswith('.block_sparse_moe.output_linear.weight'):
for e in range(p.size(0)):
w2_name = n.replace(
'.block_sparse_moe.output_linear.weight',
f".block_sparse_moe.experts.{e}.w2.weight")
w2_param = p[e]
_load_expert(n.replace('.output_linear.', '.experts.w2_'),
w2_param,
w2_name,
shard_id='w2',
expert_id=e)
elif n.endswith('.block_sparse_moe.router.layer.weight'):
gate_name = n.replace('.block_sparse_moe.router.layer.weight',
".block_sparse_moe.gate.weight")
_load(gate_name, p)
else:
_load(n, p)
return loaded_params
class GraniteMoeHybridForCausalLM(nn.Module, HasInnerState, SupportsLoRA,
SupportsPP, IsHybrid, SupportsV0Only,
SupportsQuant):
packed_modules_mapping = {}
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
if cache_config.enable_prefix_caching:
raise RuntimeError(
"GraniteMoeHybrid currently does not support prefix caching")
self.quant_config = vllm_config.quant_config
self.config = config
self.scheduler_config = scheduler_config
self.model = GraniteMoeHybridModel(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "model"))
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config else lora_config.lora_vocab_padding_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"))
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size,
scale=1 /
self.config.logits_scaling)
# Used to track and store by the Mamba cache between steps.
self.mamba_cache: Optional[MambaCacheManager] = None
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
if self.mamba_cache is None:
num_mamba_layers = self.model_config.get_num_layers_by_block_type(
self.vllm_config.parallel_config, LayerBlockType.mamba)
self.mamba_cache = MambaCacheManager(
self.vllm_config, self.model_config.dtype, num_mamba_layers,
*self._get_mamba_cache_shape())
mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
hidden_states = self.model(input_ids, positions, mamba_cache_params,
intermediate_tensors, inputs_embeds)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)
def _get_mamba_cache_shape(
self) -> tuple[tuple[int, int], tuple[int, int]]:
world_size = get_tensor_model_parallel_world_size()
hidden_size = self.config.hidden_size
conv_state_shape, temporal_state_shape = None, None
intermediate_size = self.config.mamba_expand * hidden_size
# if n_groups is not divisible by world_size, need to extend the shards
# to ensure all groups needed by a head is sharded along with it
n_groups = (self.config.mamba_n_groups + extra_groups_for_head_shards(
self.config.mamba_n_groups, world_size))
# - heads and n_groups are TP-ed
conv_dim = (intermediate_size +
2 * n_groups * self.config.mamba_d_state)
conv_state_shape = (
divide(conv_dim, world_size),
self.config.mamba_d_conv - 1,
)
# These are not TP-ed as they depend on A, dt_bias, D
# - they are typically small
# e.g., (h_heads, d_head, d_state) = (128, 64, 128)
temporal_state_shape = (
divide(self.config.mamba_n_heads, world_size),
self.config.mamba_d_head,
self.config.mamba_d_state,
)
return conv_state_shape, temporal_state_shape
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
|