File size: 24,511 Bytes
4679932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only GraniteMoeHybrid model."""
# Added by the IBM Team, 2025
from collections.abc import Iterable
from typing import Optional

import torch
from torch import nn
from transformers import GraniteMoeHybridConfig

from vllm.attention.layer import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import ReplicatedLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba2_metadata import (
    Mamba2Metadata, prepare_mamba2_metadata)
from vllm.model_executor.layers.mamba.mamba_mixer2 import (
    MambaMixer2, extra_groups_for_head_shards)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
                                                    MambaCacheParams)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType

from .granitemoe import GraniteMoeMoE
from .granitemoeshared import GraniteMoeSharedMLP
from .interfaces import (HasInnerState, IsHybrid, SupportsLoRA, SupportsPP,
                         SupportsQuant, SupportsV0Only)
from .utils import (AutoWeightsLoader, make_empty_intermediate_tensors_factory,
                    make_layers, maybe_prefix)


class GraniteMoeHybridMambaDecoderLayer(nn.Module):

    def __init__(self,
                 config: GraniteMoeHybridConfig,
                 layer_idx: int,
                 cache_config: Optional[CacheConfig] = None,
                 quant_config: Optional[QuantizationConfig] = None,
                 prefix: str = "") -> None:
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.residual_multiplier = config.residual_multiplier

        self.mamba = MambaMixer2(hidden_size= config.hidden_size,
                                ssm_state_size = config.mamba_d_state,
                                conv_kernel_size = config.mamba_d_conv,
                                intermediate_size = config.mamba_expand *\
                                                    config.hidden_size,
                                use_conv_bias = config.mamba_conv_bias,
                                use_bias = config.mamba_proj_bias,
                                n_groups=config.mamba_n_groups,
                                num_heads=config.mamba_n_heads,
                                head_dim=config.mamba_d_head,
                                rms_norm_eps=config.rms_norm_eps,
                                activation=config.hidden_act,
                                quant_config=quant_config)

        self.block_sparse_moe = GraniteMoeMoE(
            num_experts=config.num_local_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            quant_config=quant_config,
            prefix=f"{prefix}.block_sparse_moe")

        self.shared_mlp = None if \
            getattr(config, 'shared_intermediate_size', 0) == 0 \
            else GraniteMoeSharedMLP(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.shared_mlp"
            )

        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
        mamba_cache_params: MambaCacheParams,
        mamba2_metadata: Mamba2Metadata,
        **kwargs,
    ):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.mamba(hidden_states, mamba_cache_params,
                                   mamba2_metadata)
        hidden_states = residual + hidden_states * self.residual_multiplier

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        if self.shared_mlp is None:
            hidden_states = self.block_sparse_moe(hidden_states)
        else:
            # create a copy since block_sparse_moe modifies in-place
            moe_hidden_states = hidden_states.clone()
            moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
            hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
            del moe_hidden_states
        hidden_states = residual + hidden_states * self.residual_multiplier

        return hidden_states, residual


class GraniteMoeHybridAttentionDecoderLayer(nn.Module):

    def __init__(
        self,
        config: GraniteMoeHybridConfig,
        layer_idx: int,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        self.residual_multiplier = config.residual_multiplier

        self.self_attn = GraniteMoeHybridAttention(
            config,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn")

        self.block_sparse_moe = GraniteMoeMoE(
            num_experts=config.num_local_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            quant_config=quant_config,
            prefix=f"{prefix}.block_sparse_moe")

        self.shared_mlp = None if \
            getattr(config, 'shared_intermediate_size', 0) == 0 \
            else GraniteMoeSharedMLP(
                config,
                quant_config=quant_config,
                prefix=f"{prefix}.shared_mlp"
            )

        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
        mamba_cache_params: MambaCacheParams,
        mamba2_metadata: Mamba2Metadata,
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )
        hidden_states = residual + hidden_states * self.residual_multiplier

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        if self.shared_mlp is None:
            hidden_states = self.block_sparse_moe(hidden_states)
        else:
            # create a copy since block_sparse_moe modifies in-place
            moe_hidden_states = hidden_states.clone()
            moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
            hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
            del moe_hidden_states
        hidden_states = residual + hidden_states * self.residual_multiplier

        return hidden_states, residual


class GraniteMoeHybridAttention(nn.Module):

    def __init__(
        self,
        config: GraniteMoeHybridConfig,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.causal = True
        self.hidden_size = config.hidden_size
        self.attention_bias = config.attention_bias
        self.attention_multiplier = config.attention_multiplier
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads

        self.q_proj = ReplicatedLinear(self.hidden_size,
                                       self.num_heads * self.head_dim,
                                       bias=self.attention_bias,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.q_proj")

        self.k_proj = ReplicatedLinear(self.hidden_size,
                                       self.num_key_value_heads *
                                       self.head_dim,
                                       bias=self.attention_bias,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.k_proj")

        self.v_proj = ReplicatedLinear(self.hidden_size,
                                       self.num_key_value_heads *
                                       self.head_dim,
                                       bias=self.attention_bias,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.v_proj")

        self.o_proj = ReplicatedLinear(self.hidden_size,
                                       self.hidden_size,
                                       bias=self.attention_bias,
                                       quant_config=quant_config,
                                       prefix=f"{prefix}.o_proj")

        if config.position_embedding_type == "rope":
            self.rotary_emb = get_rope(
                self.head_dim,
                rotary_dim=self.head_dim,
                max_position=config.max_position_embeddings,
                base=int(config.rope_theta),
                rope_scaling=config.rope_scaling \
                    if hasattr(config, "rope_scaling") \
                    and config.rope_scaling is not None else None,
                is_neox_style=True,
            )
        else:
            self.rotary_emb = None

        self.attn = Attention(self.num_heads,
                              self.head_dim,
                              self.attention_multiplier,
                              num_kv_heads=self.num_key_value_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:

        query = self.q_proj(hidden_states)[0]
        key = self.k_proj(hidden_states)[0]
        value = self.v_proj(hidden_states)[0]

        if self.rotary_emb is not None:
            query, key = self.rotary_emb(positions, query, key)

        hidden_states = self.attn(query, key, value)
        del query, key, value

        hidden_states = self.o_proj(hidden_states)[0]
        return hidden_states


ALL_DECODER_LAYER_TYPES = {
    "attention": GraniteMoeHybridAttentionDecoderLayer,
    "mamba": GraniteMoeHybridMambaDecoderLayer,
}


class GraniteMoeHybridModel(nn.Module):

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        lora_config = vllm_config.lora_config

        self.config = config
        lora_vocab = ((lora_config.lora_extra_vocab_size *
                       (lora_config.max_loras or 1)) if lora_config else 0)
        self.vocab_size = config.vocab_size + lora_vocab
        self.org_vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            self.vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
        )
        self.embedding_multiplier = config.embedding_multiplier

        def get_layer(prefix: str):
            layer_idx = int(prefix.rsplit(".", 1)[1])
            layer_class = ALL_DECODER_LAYER_TYPES[
                config.layer_types[layer_idx]]
            return layer_class(
                config,
                layer_idx,
                cache_config,
                quant_config=quant_config,
                prefix=prefix,
            )

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers")
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        mamba_cache_params: MambaCacheParams,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        attn_metadata = get_forward_context().attn_metadata
        mamba2_metadata = prepare_mamba2_metadata(
            chunk_size=self.config.mamba_chunk_size,
            attn_metadata=attn_metadata,
        )

        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
                hidden_states = hidden_states * self.embedding_multiplier
            residual = None
        else:
            if intermediate_tensors is None:
                raise RuntimeError('Intermediate tensors may not be None!')
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        num_attn = 0
        for i in range(len(self.layers)):
            layer = self.layers[i]
            if isinstance(layer, GraniteMoeHybridAttentionDecoderLayer):
                num_attn += 1

            layer_mamba_cache_params = None
            if isinstance(layer, GraniteMoeHybridMambaDecoderLayer):
                layer_mamba_cache_params = mamba_cache_params.at_layer_idx(
                    i - num_attn)

            hidden_states, residual = layer(
                positions=positions,
                hidden_states=hidden_states,
                residual=residual,
                mamba_cache_params=layer_mamba_cache_params,
                mamba2_metadata=mamba2_metadata)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })

        hidden_states = self.norm(hidden_states)
        return hidden_states

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()

        def _load(n, p):
            param = params_dict[n]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param, p)
            loaded_params.add(n)

        def _load_expert(n, p, name, shard_id, expert_id):
            param = params_dict[n]
            weight_loader = getattr(param, "weight_loader",
                                    default_weight_loader)
            weight_loader(param,
                          p,
                          name,
                          shard_id=shard_id,
                          expert_id=expert_id)
            loaded_params.add(n)

        for n, p in weights:
            if "A_log" in n:
                n = n.replace("A_log", "A")

            # Logic analogous to: https://github.com/vllm-project/vllm/blob/f49e5aff11c986ed4d45202b1716c5d74786efa9/vllm/model_executor/models/granitemoeshared.py#L215
            # Mapping different experts' layout:
            #  from HF (input_linear, output_linear, router)
            #  to vLLM (experts_w13({e}.w1, {e}.w2), experts_w3({e}.w3), gate)
            if n.endswith('.block_sparse_moe.input_linear.weight'):
                for e in range(p.size(0)):
                    w1_name = n.replace(
                        '.block_sparse_moe.input_linear.weight',
                        f".block_sparse_moe.experts.{e}.w1.weight")
                    w3_name = n.replace(
                        '.block_sparse_moe.input_linear.weight',
                        f".block_sparse_moe.experts.{e}.w3.weight")
                    w1_param, w3_param = p[e].chunk(2, dim=0)
                    _load_expert(n.replace('.input_linear.', '.experts.w13_'),
                                 w1_param,
                                 w1_name,
                                 shard_id='w1',
                                 expert_id=e)
                    _load_expert(n.replace('.input_linear.', '.experts.w13_'),
                                 w3_param,
                                 w3_name,
                                 shard_id='w3',
                                 expert_id=e)
            elif n.endswith('.block_sparse_moe.output_linear.weight'):
                for e in range(p.size(0)):
                    w2_name = n.replace(
                        '.block_sparse_moe.output_linear.weight',
                        f".block_sparse_moe.experts.{e}.w2.weight")
                    w2_param = p[e]
                    _load_expert(n.replace('.output_linear.', '.experts.w2_'),
                                 w2_param,
                                 w2_name,
                                 shard_id='w2',
                                 expert_id=e)
            elif n.endswith('.block_sparse_moe.router.layer.weight'):
                gate_name = n.replace('.block_sparse_moe.router.layer.weight',
                                      ".block_sparse_moe.gate.weight")
                _load(gate_name, p)
            else:
                _load(n, p)

        return loaded_params


class GraniteMoeHybridForCausalLM(nn.Module, HasInnerState, SupportsLoRA,
                                  SupportsPP, IsHybrid, SupportsV0Only,
                                  SupportsQuant):
    packed_modules_mapping = {}
    embedding_modules = {
        "embed_tokens": "input_embeddings",
        "lm_head": "output_embeddings",
    }
    embedding_padding_modules = ["lm_head"]

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        cache_config = vllm_config.cache_config
        lora_config = vllm_config.lora_config
        scheduler_config = vllm_config.scheduler_config
        if cache_config.enable_prefix_caching:
            raise RuntimeError(
                "GraniteMoeHybrid currently does not support prefix caching")

        self.quant_config = vllm_config.quant_config
        self.config = config
        self.scheduler_config = scheduler_config
        self.model = GraniteMoeHybridModel(vllm_config=vllm_config,
                                           prefix=maybe_prefix(
                                               prefix, "model"))
        self.unpadded_vocab_size = config.vocab_size
        if lora_config:
            self.unpadded_vocab_size += lora_config.lora_extra_vocab_size

        self.lm_head = ParallelLMHead(
            self.unpadded_vocab_size,
            config.hidden_size,
            org_num_embeddings=config.vocab_size,
            padding_size=DEFAULT_VOCAB_PADDING_SIZE
            # We need bigger padding if using lora for kernel
            # compatibility
            if not lora_config else lora_config.lora_vocab_padding_size,
            quant_config=self.quant_config,
            prefix=maybe_prefix(prefix, "lm_head"))
        if config.tie_word_embeddings:
            self.lm_head.weight = self.model.embed_tokens.weight
        self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
                                                config.vocab_size,
                                                scale=1 /
                                                self.config.logits_scaling)

        # Used to track and store by the Mamba cache between steps.
        self.mamba_cache: Optional[MambaCacheManager] = None

        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(self,
                input_ids: torch.Tensor,
                positions: torch.Tensor,
                intermediate_tensors: Optional[IntermediateTensors] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                **kwargs):
        if self.mamba_cache is None:
            num_mamba_layers = self.model_config.get_num_layers_by_block_type(
                self.vllm_config.parallel_config, LayerBlockType.mamba)
            self.mamba_cache = MambaCacheManager(
                self.vllm_config, self.model_config.dtype, num_mamba_layers,
                *self._get_mamba_cache_shape())

        mamba_cache_params = self.mamba_cache.current_run_tensors(**kwargs)
        hidden_states = self.model(input_ids, positions, mamba_cache_params,
                                   intermediate_tensors, inputs_embeds)

        return hidden_states

    def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
        return self.mamba_cache.copy_inputs_before_cuda_graphs(
            input_buffers, **kwargs)

    def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
        return self.mamba_cache.get_seqlen_agnostic_capture_inputs(batch_size)

    def _get_mamba_cache_shape(
            self) -> tuple[tuple[int, int], tuple[int, int]]:
        world_size = get_tensor_model_parallel_world_size()
        hidden_size = self.config.hidden_size

        conv_state_shape, temporal_state_shape = None, None

        intermediate_size = self.config.mamba_expand * hidden_size

        # if n_groups is not divisible by world_size, need to extend the shards
        # to ensure all groups needed by a head is sharded along with it
        n_groups = (self.config.mamba_n_groups + extra_groups_for_head_shards(
            self.config.mamba_n_groups, world_size))

        # - heads and n_groups are TP-ed
        conv_dim = (intermediate_size +
                    2 * n_groups * self.config.mamba_d_state)
        conv_state_shape = (
            divide(conv_dim, world_size),
            self.config.mamba_d_conv - 1,
        )

        # These are not TP-ed as they depend on A, dt_bias, D
        # - they are typically small
        #   e.g., (h_heads, d_head, d_state) = (128, 64, 128)
        temporal_state_shape = (
            divide(self.config.mamba_n_heads, world_size),
            self.config.mamba_d_head,
            self.config.mamba_d_state,
        )
        return conv_state_shape, temporal_state_shape

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states,
                                       sampling_metadata)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)