--- viewer: false tags: [uv-script, vllm, gpu, inference] --- # vLLM Inference Scripts Ready-to-run UV scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm). These scripts use [UV's inline script metadata](https://docs.astral.sh/uv/guides/scripts/) to automatically manage dependencies - just run with `uv run` and everything installs automatically! ## 📋 Available Scripts ### classify-dataset.py Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine. **Note**: This script is specifically for encoder-only classification models, not generative LLMs. **Features:** - 🚀 High-throughput batch processing - 🏷️ Automatic label mapping from model config - 📊 Confidence scores for predictions - 🤗 Direct integration with Hugging Face Hub **Usage:** ```bash # Local execution (requires GPU) uv run classify-dataset.py \ davanstrien/ModernBERT-base-is-new-arxiv-dataset \ username/input-dataset \ username/output-dataset \ --inference-column text \ --batch-size 10000 ``` **HF Jobs execution:** ```bash hfjobs run \ --flavor l4x1 \ --secret HF_TOKEN=$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \ vllm/vllm-openai:latest \ /bin/bash -c ' uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \ davanstrien/ModernBERT-base-is-new-arxiv-dataset \ username/input-dataset \ username/output-dataset \ --inference-column text \ --batch-size 100000 ' \ --project vllm-classify \ --name my-classification-job ``` ## 🎯 Requirements All scripts in this collection require: - **NVIDIA GPU** with CUDA support - **Python 3.10+** - **UV package manager** ([install UV](https://docs.astral.sh/uv/getting-started/installation/)) ## 🚀 Performance Tips ### GPU Selection - **L4 GPU** (`--flavor l4x1`): Best value for classification tasks - **A10 GPU** (`--flavor a10`): Higher memory for larger models - Adjust batch size based on GPU memory ### Batch Sizes - **Local GPUs**: Start with 10,000 and adjust based on memory - **HF Jobs**: Can use larger batches (50,000-100,000) with cloud GPUs ## 📚 About vLLM vLLM is a high-throughput inference engine optimized for: - Fast model serving with PagedAttention - Efficient batch processing - Support for various model architectures - Seamless integration with Hugging Face models ## 🔧 Technical Details ### UV Script Benefits - **Zero setup**: Dependencies install automatically on first run - **Reproducible**: Locked dependencies ensure consistent behavior - **Self-contained**: Everything needed is in the script file - **Direct execution**: Run from local files or URLs ### Dependencies Scripts use UV's inline metadata with custom package indexes for vLLM's optimized builds: ```python # /// script # requires-python = ">=3.10" # dependencies = ["vllm", "datasets", "torch", ...] # # [[tool.uv.index]] # url = "https://flashinfer.ai/whl/cu126/torch2.6" # # [[tool.uv.index]] # url = "https://wheels.vllm.ai/nightly" # /// ``` ### Docker Image For HF Jobs, we use the official vLLM Docker image: `vllm/vllm-openai:latest` This image includes: - Pre-installed CUDA libraries - vLLM and all dependencies - UV package manager - Optimized for GPU inference ## 📝 Contributing Have a vLLM script to share? We welcome contributions that: - Solve real inference problems - Include clear documentation - Follow UV script best practices - Include HF Jobs examples ## 🔗 Resources - [vLLM Documentation](https://docs.vllm.ai/) - [UV Documentation](https://docs.astral.sh/uv/) - [UV Scripts Organization](https://huggingface.co/uv-scripts)