mrshu commited on
Commit
2e428d1
·
verified ·
1 Parent(s): 3dac6f9

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +110 -16
README.md CHANGED
@@ -359,7 +359,9 @@ configs:
359
 
360
  ## Dataset Description
361
 
362
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
363
 
364
  ### Dataset Summary
365
 
@@ -367,7 +369,27 @@ skLEP, the General Language Understanding Evaluation benchmark for Slovak is a c
367
 
368
  ### Supported Tasks and Leaderboards
369
 
370
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
 
372
  ### Languages
373
 
@@ -377,65 +399,129 @@ The language data in skLEP is in Slovak (BCP-47 `sk`)
377
 
378
  ### Data Instances
379
 
380
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
381
 
382
  ### Data Fields
383
 
384
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
385
 
386
  ### Data Splits
387
 
388
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
389
 
390
  ## Dataset Creation
391
 
392
  ### Curation Rationale
393
 
394
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
395
 
396
  ### Source Data
397
 
398
  #### Initial Data Collection and Normalization
399
 
400
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
401
 
402
  #### Who are the source language producers?
403
 
404
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
405
 
406
  ### Annotations
407
 
408
  #### Annotation process
409
 
410
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
411
 
412
  #### Who are the annotators?
413
 
414
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
415
 
416
  ### Personal and Sensitive Information
417
 
418
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
419
 
420
  ## Considerations for Using the Data
421
 
422
  ### Social Impact of Dataset
423
 
424
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
425
 
426
  ### Discussion of Biases
427
 
428
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
429
 
430
  ### Other Known Limitations
431
 
432
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
433
 
434
  ## Additional Information
435
 
436
  ### Dataset Curators
437
 
438
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
439
 
440
  ### Licensing Information
441
 
@@ -474,4 +560,12 @@ If you use skLEP, please cite the following paper:
474
 
475
  ### Contributions
476
 
477
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
359
 
360
  ## Dataset Description
361
 
362
+ skLEP (General Language Understanding Evaluation benchmark for Slovak) is the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. The benchmark encompasses nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities.
363
+
364
+ To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources with native speaker post-editing to ensure high quality evaluation.
365
 
366
  ### Dataset Summary
367
 
 
369
 
370
  ### Supported Tasks and Leaderboards
371
 
372
+ skLEP includes nine tasks across three categories:
373
+
374
+ **Token-Level Tasks:**
375
+
376
+ - Part-of-Speech (POS) Tagging using Universal Dependencies
377
+ - Named Entity Recognition using Universal NER (UNER)
378
+ - Named Entity Recognition using WikiGoldSK (WGSK)
379
+
380
+ **Sentence-Pair Tasks:**
381
+
382
+ - Recognizing Textual Entailment (RTE)
383
+ - Natural Language Inference (NLI)
384
+ - Semantic Textual Similarity (STS)
385
+
386
+ **Document-Level Tasks:**
387
+
388
+ - Hate Speech Classification (HS)
389
+ - Sentiment Analysis (SA)
390
+ - Question Answering (QA) based on SK-QuAD
391
+
392
+ A public leaderboard is available at <https://github.com/slovak-nlp/sklep>
393
 
394
  ### Languages
395
 
 
399
 
400
  ### Data Instances
401
 
402
+ The benchmark contains the following data splits:
403
+
404
+ - **hate-speech**: 10,531 train, 1,339 validation, 1,319 test examples
405
+ - **sentiment-analysis**: 3,560 train, 522 validation, 1,042 test examples
406
+ - **ner-wikigoldsk**: 4,687 train, 669 validation, 1,340 test examples
407
+ - **ner-uner**: 8,483 train, 1,060 validation, 1,061 test examples
408
+ - **pos**: 8,483 train, 1,060 validation, 1,061 test examples
409
+ - **question-answering**: 71,999 train, 9,583 validation, 9,583 test examples
410
+ - **rte**: 2,490 train, 277 validation, 1,660 test examples
411
+ - **nli**: 392,702 train, 2,490 validation, 5,004 test examples
412
+ - **sts**: 5,604 train, 1,481 validation, 1,352 test examples
413
 
414
  ### Data Fields
415
 
416
+ Each task has specific data fields:
417
+
418
+ **Token-level tasks** (UD, UNER, WGSK): `sentence`, `tokens`, `ner_tags`/`pos_tags`, `ner_tags_text`
419
+
420
+ **Sentence-pair tasks**:
421
+
422
+ - RTE: `text1`, `text2`, `label`, `idx`, `label_text`
423
+ - NLI: `premise`, `hypothesis`, `label`
424
+ - STS: `sentence1`, `sentence2`, `similarity_score`
425
+
426
+ **Document-level tasks**:
427
+
428
+ - Hate Speech/Sentiment: `text`, `label`, `id`
429
+ - Question Answering: `id`, `title`, `context`, `question`, `answers`
430
 
431
  ### Data Splits
432
 
433
+ All tasks follow a standard train/validation/test split structure. Some datasets (HS and QA) originally only had train/test splits, so validation sets were created by sampling from the training data to match the test set size.
434
 
435
  ## Dataset Creation
436
 
437
  ### Curation Rationale
438
 
439
+ skLEP was created to address the lack of a comprehensive benchmark for Slovak natural language understanding. While similar benchmarks exist for other Slavic languages (Bulgarian, Polish, Russian, Slovene), no equivalent existed for Slovak despite the emergence of several Slovak-specific large language models.
440
+
441
+ The benchmark was designed to provide a principled tool for evaluating language understanding capabilities across diverse tasks, enabling systematic comparison of Slovak-specific, multilingual, and English pre-trained models.
442
 
443
  ### Source Data
444
 
445
  #### Initial Data Collection and Normalization
446
 
447
+ Data was collected from multiple sources:
448
+
449
+ - **Existing Slovak datasets**: Universal Dependencies, Universal NER, WikiGoldSK, Slovak Hate Speech Database, Reviews3, SK-QuAD
450
+ - **Translated datasets**: RTE, NLI (XNLI), and STS were translated from English using machine translation services followed by native speaker post-editing
451
+
452
+ During preprocessing, duplicates were removed from XNLI and STS datasets. For STS, sentence pairs with identical text but non-perfect similarity scores were eliminated as translation artifacts.
453
 
454
  #### Who are the source language producers?
455
 
456
+ The source language producers include:
457
+
458
+ - Native Slovak speakers for original Slovak datasets
459
+ - Professional translators and native Slovak post-editors for translated datasets
460
+ - Wikipedia contributors for WikiGoldSK and SK-QuAD
461
+ - Social media users for hate speech dataset
462
+ - Customer reviewers for sentiment analysis dataset
463
 
464
  ### Annotations
465
 
466
  #### Annotation process
467
 
468
+ Annotation processes varied by dataset:
469
+
470
+ - **Token-level tasks**: Following Universal Dependencies and Universal NER annotation guidelines
471
+ - **WikiGoldSK**: Manual annotation following BSNLP-2017 guidelines with CoNLL-2003 NER tagset
472
+ - **Hate Speech**: Expert annotation with quality filtering (removing annotators with >90% uniform responses or <70% agreement)
473
+ - **Sentiment Analysis**: Manual labeling by two annotators reaching consensus
474
+ - **SK-QuAD**: Created by 150+ volunteers and 9 part-time annotators, validated by 5 paid reviewers
475
+ - **Translated datasets**: Professional translation followed by native speaker post-editing
476
 
477
  #### Who are the annotators?
478
 
479
+ Annotators include:
480
+
481
+ - Expert linguists and NLP researchers for token-level tasks
482
+ - Native Slovak speakers for post-editing translated content
483
+ - Domain experts for hate speech classification
484
+ - Trained volunteers and professional annotators for SK-QuAD
485
+ - Customer service experts for sentiment analysis
486
 
487
  ### Personal and Sensitive Information
488
 
489
+ The hate speech dataset contains social media posts that may include offensive language by design. Personal information was removed during preprocessing. Other datasets (Wikipedia-based, customer reviews, translated content) have minimal personal information risk.
490
 
491
  ## Considerations for Using the Data
492
 
493
  ### Social Impact of Dataset
494
 
495
+ skLEP enables systematic evaluation and improvement of Slovak NLP models, supporting the development of better language technology for Slovak speakers. The hate speech detection task specifically contributes to online safety tools for Slovak social media platforms.
496
 
497
  ### Discussion of Biases
498
 
499
+ Potential biases include:
500
+
501
+ - **Domain bias**: Wikipedia-heavy content in several tasks may not represent colloquial Slovak
502
+ - **Translation bias**: Translated tasks may carry over English linguistic patterns
503
+ - **Social media bias**: Hate speech dataset reflects specific online communities
504
+ - **Geographic bias**: May favor standard Slovak over regional variants
505
 
506
  ### Other Known Limitations
507
 
508
+ - Some test sets differ from English counterparts due to translation and re-labeling requirements
509
+ - Dataset sizes vary significantly across tasks
510
+ - Limited coverage of specialized domains outside Wikipedia and social media
511
+ - Validation sets for some tasks were created by splitting training data rather than independent collection
512
 
513
  ## Additional Information
514
 
515
  ### Dataset Curators
516
 
517
+ skLEP was curated by researchers from:
518
+
519
+ - Comenius University in Bratislava, Slovakia
520
+ - Technical University of Košice, Slovakia
521
+ - Kempelen Institute of Intelligent Technologies, Bratislava, Slovakia
522
+ - Cisco Systems
523
+
524
+ Lead contact: Marek Šuppa (<marek@suppa.sk>)
525
 
526
  ### Licensing Information
527
 
 
560
 
561
  ### Contributions
562
 
563
+ Contributions to skLEP include:
564
+
565
+ - First comprehensive Slovak NLU benchmark with 9 diverse tasks
566
+ - High-quality translations with native speaker post-editing
567
+ - Extensive baseline evaluations across multiple model types
568
+ - Open-source toolkit and standardized leaderboard
569
+ - Rigorous evaluation methodology with hyperparameter optimization
570
+
571
+ Future contributions and improvements are welcome through the project repository.