Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
1K - 10K
ArXiv:
License:
File size: 5,047 Bytes
4effc5f 560559b 4effc5f 8050dad 4effc5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Loading script for the VilaQuAD dataset.
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021).
VilaQuAD: an extractive QA dataset for catalan, from Vilaweb newswire text
[Data set]. Zenodo. https://doi.org/10.5281/zenodo.4562337
"""
_DESCRIPTION = """
This dataset contains 2095 of Catalan language news articles along with 1 to 5 questions referring to each fragment (or context).
VilaQuad articles are extracted from the daily Vilaweb (www.vilaweb.cat) and used under CC-by-nc-sa-nd (https://creativecommons.org/licenses/by-nc-nd/3.0/deed.ca) licence.
This dataset can be used to build extractive-QA and Language Models.
Funded by the Generalitat de Catalunya, Departament de Polítiques Digitals i Administració Pública (AINA),
MT4ALL and Plan de Impulso de las Tecnologías del Lenguaje (Plan TL).
"""
_HOMEPAGE = """https://doi.org/10.5281/zenodo.4562337"""
_URL = "https://huggingface.co/datasets/projecte-aina/vilaquad/resolve/main/"
_TRAINING_FILE = "train.json"
_DEV_FILE = "dev.json"
_TEST_FILE = "test.json"
class VilaQuADConfig(datasets.BuilderConfig):
""" Builder config for the VilaQuAD dataset """
def __init__(self, **kwargs):
"""BuilderConfig for VilaQuAD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(VilaQuADConfig, self).__init__(**kwargs)
class VilaQuAD(datasets.GeneratorBasedBuilder):
"""VilaQuAD Dataset."""
BUILDER_CONFIGS = [
VilaQuADConfig(
name="VilaQuAD",
version=datasets.Version("1.0.1"),
description="VilaQuAD dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": [
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
],
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
vilaquad = json.load(f)
for article in vilaquad["data"]:
title = article.get("title", "").strip()
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
#answer_starts = [answer["answer_start"] for answer in qa["answers"]]
#answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
text = qa["answers"][0]["text"]
answer_start = qa["answers"][0]["answer_start"]
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": [{"text": text, "answer_start": answer_start}]
}
|